U-tiling: UQC1952
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1627 |
*222222 |
(2,6,4) |
{16,3} |
{4.4.3.4.4.3.4.4.4.4.3.4.4.3.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc102
|
|
Pmmm |
47 |
orthorhombic |
{10,3} |
3 |
(2,5) |
G
|
False
|
|
sqc4017
|
|
C2/c |
15 |
monoclinic |
{3,16} |
6 |
(2,7) |
D
|
True
|
|
sqc2319
|
|
Imma |
74 |
orthorhombic |
{3,12} |
6 |
(2,6) |
Topological data
Vertex degrees | {16,3} |
2D vertex symbol | {4.4.3.4.4.3.4.4.4.4.3.4.4.3.4.4}{3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<77.3:88:56 4 5 61 51 52 31 32 22 78 15 16 83 73 74 42 43 67 26 27 72 84 85 44 45 37 38 50 62 63 48 49 86 87 77 59 60 75 76 88 70 71 81 82,2 47 6 7 9 11 13 69 17 18 20 22 24 80 28 29 31 33 35 58 39 40 42 44 46 50 51 53 55 57 61 62 64 66 68 72 73 75 77 79 83 84 86 88,45 3 5 50 8 10 33 67 14 16 72 19 21 44 78 25 27 83 30 32 56 36 38 61 41 43 47 49 52 54 88 58 60 63 65 77 69 71 74 76 80 82 85 87:4 3 4 4 4 3 4 4 3 4 3 4,3 16 3 16 3 3> {(2, 33): 'tau2*t3', (2, 22): 'tau3^-1*t2', (0, 29): 'tau3^-1*t2', (0, 51): 't3*tau2', (0, 60): 't3^-1', (0, 41): 't1', (0, 16): 't2', (0, 75): 't2*tau3^-1*t1^-1*tau2*t3', (0, 53): 't3*tau2*t1^-1*tau3^-1*t2', (0, 62): 't3^-1*tau2^-1', (1, 46): 't3*tau2', (1, 68): 't2*tau3^-1', (1, 79): 't2^-1*tau3', (0, 55): 't3^-1', (0, 22): 't2^-1', (0, 42): 't1', (0, 18): 'tau3*t2^-1', (0, 17): 'tau3*t2^-1', (1, 57): 't3^-1*tau2^-1', (0, 61): 't3^-1*tau2^-1', (0, 28): 'tau3^-1*t2', (0, 9): 't1^-1', (0, 50): 't3*tau2', (0, 63): 't3^-1*tau2^-1*t1*tau3*t2^-1', (0, 30): 't1', (0, 11): 't2', (0, 52): 't3*tau2*t1^-1*tau3^-1*t2', (2, 44): 't3*tau2', (0, 87): 'tau1', (2, 11): 'tau3*t2^-1', (0, 54): 'tau1', (0, 44): 't3', (0, 27): 't2^-1', (0, 49): 't3', }