U-tiling: UQC2083
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1672 |
*22222 |
(2,6,4) |
{8,3} |
{4.4.4.3.3.4.4.4}{4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9659
|
|
P4/mmm |
123 |
tetragonal |
{7,3} |
16 |
(2,6) |
G
|
False
|
|
sqc10233
|
|
I4122 |
98 |
tetragonal |
{8,3} |
16 |
(2,7) |
D
|
False
|
|
sqc4271
|
|
P4222 |
93 |
tetragonal |
{3,8} |
8 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.4.3.3.4.4.4}{4.4.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<62.3:176:23 4 5 17 18 19 31 32 55 34 15 16 42 43 66 26 27 39 40 41 77 37 38 99 67 48 49 83 84 85 75 76 89 59 60 105 106 107 97 98 70 71 116 117 118 111 81 82 119 120 143 92 93 127 128 129 122 103 104 130 131 154 114 115 165 125 126 176 155 136 137 149 150 151 163 164 166 147 148 174 175 158 159 171 172 173 169 170,2 7 26 6 9 11 13 18 37 17 20 22 24 29 28 31 33 35 40 39 42 44 46 51 70 50 53 55 57 62 92 61 64 66 68 73 72 75 77 79 84 114 83 86 88 90 95 94 97 99 101 106 125 105 108 110 112 117 116 119 121 123 128 127 130 132 134 139 158 138 141 143 145 150 169 149 152 154 156 161 160 163 165 167 172 171 174 176,100 3 5 28 8 10 110 78 14 16 39 19 21 88 122 25 27 30 32 132 111 36 38 41 43 121 144 47 49 72 52 54 154 133 58 60 94 63 65 143 166 69 71 74 76 176 80 82 116 85 87 155 91 93 96 98 165 102 104 127 107 109 113 115 118 120 124 126 129 131 135 137 160 140 142 146 148 171 151 153 157 159 162 164 168 170 173 175:3 4 4 4 3 4 4 3 4 4 3 4 4 4 3 4 4 3 4 3 4 4 3 4,8 3 8 3 8 8 8 3 8 3 8 3 8 3 3 3> {(0, 41): 't1', (0, 117): 'tau2', (0, 129): 'tau3^-1*t2', (0, 55): 't2*tau3^-1', (0, 173): 't1^-1*tau3^-1*t2', (0, 22): 't1^-1', (1, 157): 't1*tau3*t2^-1', (2, 98): 't1^-1', (0, 154): 't1*tau3*t2^-1', (2, 32): 't1^-1', (1, 25): 't1^-1', (1, 91): 'tau3*t2^-1', (0, 42): 't1', (0, 118): 'tau2*t3', (0, 163): 'tau2*t3', (0, 130): 'tau3^-1*t2', (0, 174): 't1^-1*tau3^-1*t2', (0, 39): 't1', (2, 22): 't1^-1', (0, 115): 'tau2', (0, 126): 'tau3^-1', (0, 171): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 61): 't2', (0, 40): 't1', (0, 149): 'tau1', (2, 88): 't1^-1', (0, 116): 'tau2', (0, 128): 'tau3^-1', (0, 172): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 159): 't1*tau3*t2^-1', (2, 60): 't2*tau3^-1', (2, 27): 't1^-1', (0, 51): 't3', (2, 148): 't3*tau2', (0, 62): 't2', (2, 49): 't3*tau2', (0, 150): 'tau1', (0, 162): 'tau2*t3', (0, 38): 't1', (0, 170): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 49): 't3', (0, 60): 't2', (0, 43): 't1', (0, 148): 'tau1', (0, 119): 'tau2*t3', (1, 168): 'tau2^-1*t3^-1', (0, 175): 't1^-1', (0, 50): 't3', (0, 127): 'tau3^-1', (1, 47): 't3*tau2', (0, 44): 't3*tau2', (0, 165): 'tau2^-1*t3^-1', }