h-net: hqc1672


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,6,4)
Vertex degrees{8,3}
2D vertex symbol {4.4.4.3.3.4.4.4}{4.4.3}
Delaney-Dress Symbol <1672.2:11:1 2 3 4 5 7 9 10 11,2 4 6 11 10 9,1 3 5 8 9 10 11:4 4 4 3,8 3>
Dual net hqc1767

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc560 Pmmm 47 orthorhombic {3,8} 4 (2,6)
Full image sqc4238 Fmmm 69 orthorhombic {8,3} 8 (2,6)
Full image sqc10205 P4/mmm 123 tetragonal {8,3} 16 (2,6)
Full image sqc10126 I4122 98 tetragonal {8,3} 16 (2,7)
Full image sqc10138 I4122 98 tetragonal {8,3} 16 (2,7)
Full image sqc10209 I4122 98 tetragonal {8,3} 16 (2,7)
Full image sqc10233 I4122 98 tetragonal {8,3} 16 (2,7)
Full image sqc10234 I4122 98 tetragonal {8,3} 16 (2,7)
Full image sqc10247 Fddd 70 orthorhombic {8,3} 16 (2,7)
Full image sqc10248 Fddd 70 orthorhombic {8,3} 16 (2,7)
Full image sqc10259 Fddd 70 orthorhombic {8,3} 16 (2,7)
Full image sqc10266 Fddd 70 orthorhombic {8,3} 16 (2,7)
Full image sqc10409 Fddd 70 orthorhombic {8,3} 16 (2,7)
Full image sqc577 Pmmm 47 orthorhombic {8,3} 4 (2,6)
Full image sqc588 Pmmm 47 orthorhombic {3,8} 4 (2,6)
Full image sqc4080 P4222 93 tetragonal {8,3} 8 (2,6)
Full image sqc4111 P4222 93 tetragonal {8,3} 8 (2,6)
Full image sqc4268 P4222 93 tetragonal {8,3} 8 (2,6)
Full image sqc4271 P4222 93 tetragonal {3,8} 8 (2,6)
Full image sqc4330 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4332 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4368 P4222 93 tetragonal {8,3} 8 (2,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2075 *22222a (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} No s‑net Snet sqc10138 Snet sqc4111
Tiling details UQC2076 *22222a (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} Snet sqc10205 Snet sqc10209 Snet sqc4368
Tiling details UQC2077 *22222b (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} Snet sqc3399 Snet sqc10259 Snet sqc588
Tiling details UQC2078 *22222a (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} No s‑net Snet sqc10234 Snet sqc4268
Tiling details UQC2079 *22222b (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} Snet sqc560 Snet sqc10247 Snet sqc4332
Tiling details UQC2080 *22222b (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} Snet sqc4238 Snet sqc10248 Snet sqc560
Tiling details UQC2081 *22222b (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} No s‑net Snet sqc10266 Snet sqc577
Tiling details UQC2082 *22222b (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} Snet sqc560 Snet sqc10409 Snet sqc4330
Tiling details UQC2083 *22222a (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} Snet sqc9659 Snet sqc10233 Snet sqc4271
Tiling details UQC2084 *22222a (2,6,4) {8,3} {4.4.4.3.3.4.4.4}{4.4.3} Snet sqc3229 Snet sqc10126 Snet sqc4080

Symmetry-lowered hyperbolic tilings