Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,6,4) |
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.4.3.3.4.4.4}{4.4.3} |
Delaney-Dress Symbol | <1672.2:11:1 2 3 4 5 7 9 10 11,2 4 6 11 10 9,1 3 5 8 9 10 11:4 4 4 3,8 3> |
Dual net | hqc1767 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc560 | Pmmm | 47 | orthorhombic | {3,8} | 4 | (2,6) | ||
sqc4238 | Fmmm | 69 | orthorhombic | {8,3} | 8 | (2,6) | ||
sqc10205 | P4/mmm | 123 | tetragonal | {8,3} | 16 | (2,6) | ||
sqc10126 | I4122 | 98 | tetragonal | {8,3} | 16 | (2,7) | ||
sqc10138 | I4122 | 98 | tetragonal | {8,3} | 16 | (2,7) | ||
sqc10209 | I4122 | 98 | tetragonal | {8,3} | 16 | (2,7) | ||
sqc10233 | I4122 | 98 | tetragonal | {8,3} | 16 | (2,7) | ||
sqc10234 | I4122 | 98 | tetragonal | {8,3} | 16 | (2,7) | ||
sqc10247 | Fddd | 70 | orthorhombic | {8,3} | 16 | (2,7) | ||
sqc10248 | Fddd | 70 | orthorhombic | {8,3} | 16 | (2,7) | ||
sqc10259 | Fddd | 70 | orthorhombic | {8,3} | 16 | (2,7) | ||
sqc10266 | Fddd | 70 | orthorhombic | {8,3} | 16 | (2,7) | ||
sqc10409 | Fddd | 70 | orthorhombic | {8,3} | 16 | (2,7) | ||
sqc577 | Pmmm | 47 | orthorhombic | {8,3} | 4 | (2,6) | ||
sqc588 | Pmmm | 47 | orthorhombic | {3,8} | 4 | (2,6) | ||
sqc4080 | P4222 | 93 | tetragonal | {8,3} | 8 | (2,6) | ||
sqc4111 | P4222 | 93 | tetragonal | {8,3} | 8 | (2,6) | ||
sqc4268 | P4222 | 93 | tetragonal | {8,3} | 8 | (2,6) | ||
sqc4271 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) | ||
sqc4330 | Cmma | 67 | orthorhombic | {3,8} | 8 | (2,6) | ||
sqc4332 | Cmma | 67 | orthorhombic | {3,8} | 8 | (2,6) | ||
sqc4368 | P4222 | 93 | tetragonal | {8,3} | 8 | (2,6) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC2075 | *22222a | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | No s‑net | sqc10138 | sqc4111 | |
UQC2076 | *22222a | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | sqc10205 | sqc10209 | sqc4368 | |
UQC2077 | *22222b | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | sqc3399 | sqc10259 | sqc588 | |
UQC2078 | *22222a | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | No s‑net | sqc10234 | sqc4268 | |
UQC2079 | *22222b | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | sqc560 | sqc10247 | sqc4332 | |
UQC2080 | *22222b | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | sqc4238 | sqc10248 | sqc560 | |
UQC2081 | *22222b | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | No s‑net | sqc10266 | sqc577 | |
UQC2082 | *22222b | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | sqc560 | sqc10409 | sqc4330 | |
UQC2083 | *22222a | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | sqc9659 | sqc10233 | sqc4271 | |
UQC2084 | *22222a | (2,6,4) | {8,3} | {4.4.4.3.3.4.4.4}{4.4.3} | sqc3229 | sqc10126 | sqc4080 |