U-tiling: UQC2104
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1690 |
*22222 |
(2,6,4) |
{6,5} |
{4.3.4.4.3.4}{3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4273
|
|
Fmmm |
69 |
orthorhombic |
{6,5} |
8 |
(2,6) |
G
|
False
|
|
sqc10281
|
|
Fddd |
70 |
orthorhombic |
{5,6} |
16 |
(2,7) |
D
|
False
|
|
sqc4414
|
|
Cmma |
67 |
orthorhombic |
{5,6} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.3.4.4.3.4}{3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.3:176:45 13 14 6 7 19 97 98 110 56 17 18 119 120 132 67 35 36 28 29 41 141 142 154 78 39 40 163 164 176 57 58 50 51 63 130 131 121 61 62 108 109 99 79 80 72 73 85 174 175 165 83 84 152 153 143 122 112 113 94 95 118 111 123 124 105 106 129 116 117 127 128 166 156 157 138 139 162 155 167 168 149 150 173 160 161 171 172,2 4 93 8 9 11 13 15 115 19 20 22 24 26 137 30 31 33 35 37 159 41 42 44 46 48 126 52 53 55 57 59 104 63 64 66 68 70 170 74 75 77 79 81 148 85 86 88 90 92 96 97 99 101 103 107 108 110 112 114 118 119 121 123 125 129 130 132 134 136 140 141 143 145 147 151 152 154 156 158 162 163 165 167 169 173 174 176,89 3 5 7 30 10 33 111 14 16 18 41 21 44 133 25 27 29 32 155 36 38 40 43 122 47 49 51 74 54 77 100 58 60 62 85 65 88 166 69 71 73 76 144 80 82 84 87 91 93 95 140 98 143 102 104 106 151 109 154 113 115 117 162 120 165 124 126 128 173 131 176 135 137 139 142 146 148 150 153 157 159 161 164 168 170 172 175:4 4 3 4 3 4 4 4 3 4 3 4 4 3 3 4 3 3 4 4 4 4 4 4,5 6 5 6 5 5 5 6 5 6 5 5 6 6 6 6> {(0, 117): 'tau1^-1', (2, 109): 't3^-1', (1, 37): 'tau3', (0, 173): 'tau3', (0, 22): 't1^-1', (0, 140): 'tau2', (0, 111): 'tau1^-1', (2, 131): 't2^-1', (2, 98): 't3', (0, 154): 'tau3^-1*t1^-1*tau2', (0, 166): 't2*tau1*t3^-1', (2, 172): 't2', (0, 151): 'tau2^-1', (0, 163): 'tau3^-1', (2, 106): 't3^-1', (0, 174): 'tau3', (1, 169): 'tau3', (2, 22): 'tau2^-1', (1, 81): 'tau2', (0, 152): 'tau2^-1', (0, 123): 'tau1', (0, 161): 't2^-1*tau1^-1*t3', (0, 128): 'tau1', (0, 54): 't2^-1', (0, 172): 't2*tau1*t3^-1', (1, 26): 'tau2^-1', (0, 162): 'tau3^-1', (2, 77): 'tau2', (0, 141): 'tau2', (2, 95): 't3', (0, 155): 't2^-1*tau1^-1*t3', (2, 66): 'tau3^-1', (0, 122): 'tau1', (2, 33): 'tau3', (2, 117): 't2', (2, 120): 't2', (0, 10): 't3', (0, 131): 't2^-1', (0, 98): 't3', (0, 145): 't3*tau1^-1*t2^-1', (0, 112): 'tau1^-1', (0, 156): 't2^-1*tau1^-1*t3', (0, 33): 't1^-1', (0, 165): 'tau3*t1*tau2^-1', }