U-tiling: UQC2106
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1690 |
*22222 |
(2,6,4) |
{6,5} |
{4.3.4.4.3.4}{3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4413
|
|
Fmmm |
69 |
orthorhombic |
{5,6} |
8 |
(2,6) |
G
|
False
|
|
sqc10421
|
|
Fddd |
70 |
orthorhombic |
{5,6} |
16 |
(2,7) |
D
|
False
|
|
sqc4276
|
|
Cmma |
67 |
orthorhombic |
{6,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.3.4.4.3.4}{3.4.4.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.1:176:100 90 91 6 7 96 31 32 22 122 112 113 17 18 118 42 43 144 134 135 28 29 140 44 166 156 157 39 40 162 111 123 124 50 51 129 75 76 66 89 101 102 61 62 107 86 87 155 167 168 72 73 173 88 133 145 146 83 84 151 94 95 141 142 121 105 106 152 153 132 116 117 163 164 127 128 174 175 138 139 165 149 150 176 160 161 171 172,2 4 27 8 9 11 13 15 38 19 20 22 24 26 30 31 33 35 37 41 42 44 46 48 71 52 53 55 57 59 82 63 64 66 68 70 74 75 77 79 81 85 86 88 90 92 137 96 97 99 101 103 148 107 108 110 112 114 159 118 119 121 123 125 170 129 130 132 134 136 140 141 143 145 147 151 152 154 156 158 162 163 165 167 169 173 174 176,23 3 5 7 52 10 55 34 14 16 18 63 21 66 25 27 29 74 32 77 36 38 40 85 43 88 67 47 49 51 54 78 58 60 62 65 69 71 73 76 80 82 84 87 133 91 93 95 129 98 132 144 102 104 106 118 109 121 155 113 115 117 120 166 124 126 128 131 135 137 139 173 142 176 146 148 150 162 153 165 157 159 161 164 168 170 172 175:4 4 3 4 4 4 3 4 4 4 4 4 3 4 4 3 4 4 3 4 3 4 3 3,5 6 5 6 6 6 5 5 5 6 5 6 5 5 6 6> {(2, 175): 'tau3*t1*tau2^-1', (0, 129): 't2^-1', (1, 114): 't2', (2, 43): 't1^-1', (0, 140): 't3^-1', (1, 103): 't3^-1', (0, 166): 'tau3', (2, 172): 'tau3*t1*tau2^-1', (0, 151): 't3', (0, 163): 't2^-1', (0, 130): 't2^-1', (2, 73): 't1', (1, 125): 't2^-1', (2, 40): 't1^-1', (2, 161): 'tau3^-1*t1^-1*tau2', (0, 144): 'tau2^-1', (0, 152): 't3', (0, 164): 't2^-1*tau1^-1*t3', (0, 55): 't3^-1', (2, 121): 't2^-1', (2, 88): 't3', (0, 11): 't2', (0, 161): 'tau3^-1', (0, 172): 'tau3', (1, 92): 't3', (0, 150): 'tau2^-1', (0, 162): 't2^-1', (0, 133): 'tau2', (2, 110): 't2', (0, 141): 't3^-1', (2, 99): 't3^-1', (0, 155): 'tau3^-1', (0, 167): 'tau3', (0, 134): 'tau2', (2, 153): 'tau2^-1*t1*tau3', (2, 32): 't1^-1', (0, 131): 'tau1', (0, 175): 't2*tau1*t3^-1', (0, 145): 'tau2^-1', (0, 156): 'tau3^-1', (0, 139): 'tau2', (0, 0): 't3', (0, 44): 't2^-1', (0, 120): 'tau1^-1', }