U-tiling: UQC2107
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1690 |
*22222 |
(2,6,4) |
{6,5} |
{4.3.4.4.3.4}{3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3735
|
|
Fmmm |
69 |
orthorhombic |
{4,6} |
8 |
(2,6) |
G
|
False
|
|
sqc10283
|
|
Fddd |
70 |
orthorhombic |
{5,6} |
16 |
(2,7) |
D
|
False
|
|
sqc4318
|
|
Cmma |
67 |
orthorhombic |
{6,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.3.4.4.3.4}{3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.5:176:23 101 102 6 7 107 20 21 55 34 123 124 17 18 129 66 145 146 28 29 151 42 43 77 167 168 39 40 173 88 67 112 113 50 51 118 64 65 78 90 91 61 62 96 156 157 72 73 162 86 87 134 135 83 84 140 133 94 95 119 120 132 144 105 106 130 131 121 155 116 117 166 127 128 138 139 163 164 176 149 150 174 175 165 160 161 171 172,2 4 16 8 9 11 13 15 19 20 22 24 26 38 30 31 33 35 37 41 42 44 46 48 60 52 53 55 57 59 63 64 66 68 70 82 74 75 77 79 81 85 86 88 90 92 115 96 97 99 101 103 126 107 108 110 112 114 118 119 121 123 125 129 130 132 134 136 159 140 141 143 145 147 170 151 152 154 156 158 162 163 165 167 169 173 174 176,12 3 5 7 96 10 99 14 16 18 118 21 121 34 25 27 29 140 32 143 36 38 40 162 43 165 56 47 49 51 129 54 132 58 60 62 107 65 110 78 69 71 73 173 76 176 80 82 84 151 87 154 111 91 93 95 98 122 102 104 106 109 113 115 117 120 124 126 128 131 155 135 137 139 142 166 146 148 150 153 157 159 161 164 168 170 172 175:4 4 3 4 4 4 4 3 4 4 4 4 3 4 4 4 3 4 3 4 3 3 4 3,5 6 6 5 6 6 5 6 6 5 6 6 5 5 5 5> {(0, 129): 'tau1', (2, 76): 'tau3^-1', (1, 114): 'tau1^-1', (2, 43): 'tau3', (0, 140): 't3^-1*tau1*t2', (0, 154): 't2^-1', (2, 32): 'tau2^-1', (0, 151): 't3*tau1^-1*t2^-1', (0, 118): 'tau1^-1', (0, 163): 't2^-1*tau1^-1*t3', (1, 169): 't2*tau1*t3^-1', (0, 130): 'tau1', (2, 73): 'tau3^-1', (0, 56): 't3^-1', (2, 40): 'tau3', (0, 2): 't3', (0, 32): 't1^-1', (1, 125): 'tau1', (0, 152): 't3*tau1^-1*t2^-1', (0, 123): 't2^-1', (0, 164): 'tau3^-1*t1^-1*tau2', (2, 121): 'tau1', (0, 128): 't2^-1', (0, 143): 't3', (1, 158): 't2^-1*tau1^-1*t3', (0, 51): 't2^-1', (0, 62): 't3^-1', (0, 1): 't3', (0, 45): 't2^-1', (0, 12): 't2', (2, 87): 'tau2', (2, 143): 't3*tau1^-1*t2^-1', (2, 110): 'tau1^-1', (2, 132): 't3^-1*tau1*t2', (0, 46): 't2^-1', (2, 29): 'tau2^-1', (2, 84): 'tau2', (0, 43): 't1^-1', (0, 119): 'tau1^-1', (0, 57): 't3^-1', (0, 175): 'tau3*t1*tau2^-1', (0, 7): 't3', (0, 165): 't2', (0, 132): 't3^-1', }