U-tiling: UQC2108
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1690 |
*22222 |
(2,6,4) |
{6,5} |
{4.3.4.4.3.4}{3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3590
|
|
Fmmm |
69 |
orthorhombic |
{5,5} |
8 |
(2,6) |
G
|
False
|
|
sqc10280
|
|
Fddd |
70 |
orthorhombic |
{5,6} |
16 |
(2,7) |
D
|
False
|
|
sqc4313
|
|
Cmma |
67 |
orthorhombic |
{5,6} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.3.4.4.3.4}{3.4.4.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.2:176:89 46 47 6 7 52 108 109 33 111 57 58 17 18 63 130 131 44 133 68 69 28 29 74 152 153 155 79 80 39 40 85 174 175 122 50 51 119 120 77 100 61 62 97 98 88 166 72 73 163 164 144 83 84 141 142 123 124 94 95 129 143 112 113 105 106 118 154 116 117 165 127 128 176 167 168 138 139 173 156 157 149 150 162 160 161 171 172,2 4 104 8 9 11 13 15 126 19 20 22 24 26 148 30 31 33 35 37 170 41 42 44 46 48 115 52 53 55 57 59 93 63 64 66 68 70 159 74 75 77 79 81 137 85 86 88 90 92 96 97 99 101 103 107 108 110 112 114 118 119 121 123 125 129 130 132 134 136 140 141 143 145 147 151 152 154 156 158 162 163 165 167 169 173 174 176,100 3 5 7 19 10 22 122 14 16 18 21 144 25 27 29 41 32 44 166 36 38 40 43 111 47 49 51 63 54 66 89 58 60 62 65 155 69 71 73 85 76 88 133 80 82 84 87 91 93 95 118 98 121 102 104 106 129 109 132 113 115 117 120 124 126 128 131 135 137 139 162 142 165 146 148 150 173 153 176 157 159 161 164 168 170 172 175:4 4 3 4 4 4 3 4 4 4 3 4 4 3 3 4 3 4 3 3 4 4 4 4,5 6 5 5 6 5 5 6 5 5 6 5 6 6 6 6> {(0, 29): 't1^-1', (2, 175): 't2*tau1*t3^-1', (0, 8): 't3', (2, 109): 'tau1^-1', (0, 129): 't2^-1', (1, 114): 't2', (0, 34): 't1^-1', (2, 98): 'tau1', (0, 154): 'tau3^-1', (0, 166): 'tau3*t1*tau2^-1', (0, 63): 't3^-1', (2, 172): 't2*tau1*t3^-1', (2, 106): 'tau1^-1', (0, 130): 't2^-1', (1, 125): 't2^-1', (2, 55): 't3^-1', (2, 161): 't2^-1*tau1^-1*t3', (0, 53): 't2^-1', (0, 109): 't3^-1', (0, 164): 't2^-1', (0, 40): 't1^-1', (0, 161): 'tau3^-1*t1^-1*tau2', (0, 172): 'tau3*t1*tau2^-1', (1, 92): 't3', (0, 143): 'tau2^-1', (1, 103): 't3^-1', (2, 142): 't3^-1*tau1*t2', (0, 9): 't3', (0, 52): 't2^-1', (0, 97): 't3', (2, 44): 't2^-1', (0, 23): 't1^-1', (2, 11): 't2', (0, 35): 't1^-1', (0, 155): 'tau3^-1*t1^-1*tau2', (0, 167): 'tau3*t1*tau2^-1', (2, 0): 't3', (2, 117): 'tau1^-1', (0, 175): 't2', (0, 24): 't1^-1', (0, 142): 't3^-1', (0, 156): 'tau3^-1*t1^-1*tau2', (0, 165): 'tau3', (0, 132): 'tau2', }