U-tiling: UQC2214
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1733 |
*22222 |
(2,6,4) |
{8,3} |
{4.3.4.4.4.4.3.4}{3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9660
|
|
P4/mmm |
123 |
tetragonal |
{3,7} |
16 |
(2,6) |
G
|
False
|
|
sqc10236
|
|
I4122 |
98 |
tetragonal |
{3,8} |
16 |
(2,7) |
D
|
False
|
|
sqc4272
|
|
P4222 |
93 |
tetragonal |
{8,3} |
8 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.3.4.4.4.4.3.4}{3.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<63.5:176:23 4 5 28 29 52 20 21 33 34 15 16 39 40 63 44 26 27 74 42 43 37 38 96 67 48 49 72 73 86 87 77 89 59 60 94 95 108 109 99 70 71 119 120 111 81 82 116 117 140 121 92 93 130 131 122 103 104 127 128 151 132 114 115 162 125 126 173 155 136 137 160 161 152 153 165 166 147 148 171 172 176 158 159 174 175 169 170,2 14 6 9 8 11 13 17 20 19 22 24 36 28 31 30 33 35 39 42 41 44 46 80 50 53 52 55 57 102 61 64 63 66 68 113 72 75 74 77 79 83 86 85 88 90 124 94 97 96 99 101 105 108 107 110 112 116 119 118 121 123 127 130 129 132 134 146 138 141 140 143 145 149 152 151 154 156 168 160 163 162 165 167 171 174 173 176,12 3 5 7 107 10 110 14 16 18 85 21 88 34 25 27 29 129 32 132 36 38 40 118 43 121 78 47 49 51 151 54 154 100 58 60 62 140 65 143 111 69 71 73 173 76 176 80 82 84 87 122 91 93 95 162 98 165 102 104 106 109 113 115 117 120 124 126 128 131 144 135 137 139 142 146 148 150 153 166 157 159 161 164 168 170 172 175:4 3 4 4 4 4 3 4 3 4 4 3 4 3 4 4 3 4 4 4 3 4 4 3,3 8 8 3 8 8 3 8 3 8 3 8 3 8 3 3> {(0, 41): 't1', (0, 96): 'tau3', (0, 173): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 98): 't1^-1', (0, 154): 'tau2*t3', (2, 32): 't1^-1', (0, 137): 't3^-1*tau2^-1', (0, 63): 't2', (0, 42): 't1', (0, 151): 'tau1', (0, 118): 'tau2', (0, 130): 'tau3^-1', (0, 174): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 55): 't2', (0, 39): 't1', (0, 115): 'tau2*t3', (1, 112): 'tau2', (0, 126): 'tau3^-1*t2', (0, 171): 't1^-1*tau3^-1*t2', (0, 65): 't2*tau3^-1', (0, 138): 't3^-1*tau2^-1', (1, 101): 't2^-1', (1, 167): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 152): 'tau1', (0, 164): 't1*tau3*t2^-1', (1, 35): 't1', (2, 121): 'tau3^-1', (0, 40): 't1', (0, 116): 'tau2*t3', (0, 54): 't3*tau2', (0, 172): 't1^-1', (0, 110): 'tau2*t3', (1, 123): 'tau3^-1', (1, 46): 't3', (1, 145): 'tau1', (0, 121): 'tau3^-1*t2', (0, 38): 't1', (2, 143): 'tau1', (2, 110): 'tau2', (0, 52): 't3', (2, 44): 't3', (2, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 108): 't2^-1', (2, 95): 't1^-1', (2, 29): 't1^-1', (0, 53): 't3', (2, 33): 't1', (0, 148): 't2^-1*tau3*t1', (0, 119): 'tau2', (0, 175): 'tau2^-1*t3^-1', (0, 32): 't1^-1', (0, 127): 'tau3^-1*t2', (0, 33): 't1', (0, 165): 't1^-1*tau3^-1*t2', }