| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,6,4) |
| Vertex degrees | {8,3} |
| 2D vertex symbol | {4.3.4.4.4.4.3.4}{3.4.4} |
| Delaney-Dress Symbol | <1733.2:11:1 2 3 5 7 8 9 10 11,2 4 5 8 11 10,1 3 6 7 9 10 11:4 3 4 4,8 3> |
| Dual net | hqc1772 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc4076 | P4/mmm | 123 | tetragonal | {8,3} | 8 | (2,5) | |
|
sqc4248 | Fmmm | 69 | orthorhombic | {8,3} | 8 | (2,6) | |
|
sqc4261 | Fmmm | 69 | orthorhombic | {3,8} | 8 | (2,6) | |
|
sqc10135 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | |
|
sqc10136 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | |
|
sqc10215 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | |
|
sqc10232 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | |
|
sqc10236 | I4122 | 98 | tetragonal | {3,8} | 16 | (2,7) | |
|
sqc10265 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | |
|
sqc10267 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | |
|
sqc10407 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | |
|
sqc10410 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | |
|
sqc10412 | Fddd | 70 | orthorhombic | {3,8} | 16 | (2,7) | |
|
sqc673 | Fmmm | 69 | orthorhombic | {3,8} | 4 | (2,5) | |
|
sqc4110 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) | |
|
sqc4112 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) | |
|
sqc4270 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) | |
|
sqc4272 | P4222 | 93 | tetragonal | {8,3} | 8 | (2,6) | |
|
sqc4306 | Cmma | 67 | orthorhombic | {8,3} | 8 | (2,6) | |
|
sqc4307 | Cmma | 67 | orthorhombic | {3,8} | 8 | (2,6) | |
|
sqc4379 | Cmma | 67 | orthorhombic | {3,8} | 8 | (2,6) | |
|
sqc4380 | Cmma | 67 | orthorhombic | {3,8} | 8 | (2,6) | |
|
sqc4553 | P4222 | 93 | tetragonal | {3,8} | 8 | (2,6) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC2212 | *22222a | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc9380
|
sqc10136
|
sqc4112
|
![]() |
UQC2213 | *22222a | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc9366
|
sqc10135
|
sqc4110
|
![]() |
UQC2214 | *22222a | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc9660
|
sqc10236
|
sqc4272
|
![]() |
UQC2215 | *22222a | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc4076
|
sqc10215
|
sqc4553
|
![]() |
UQC2216 | *22222b | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc3398
|
sqc10267
|
sqc4307
|
![]() |
UQC2217 | *22222a | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc9659
|
sqc10232
|
sqc4270
|
![]() |
UQC2218 | *22222b | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc4261
|
sqc10407
|
sqc4379
|
![]() |
UQC2219 | *22222b | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc4248
|
sqc10412
|
sqc673
|
![]() |
UQC2220 | *22222b | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc4261
|
sqc10410
|
sqc4380
|
![]() |
UQC2221 | *22222b | (2,6,4) | {8,3} | {4.3.4.4.4.4.3.4}{3.4.4} |
sqc3400
|
sqc10265
|
sqc4306
|