U-tiling: UQC2217
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1733 |
*22222 |
(2,6,4) |
{8,3} |
{4.3.4.4.4.4.3.4}{3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9659
|
|
P4/mmm |
123 |
tetragonal |
{7,3} |
16 |
(2,6) |
G
|
False
|
|
sqc10232
|
|
I4122 |
98 |
tetragonal |
{3,8} |
16 |
(2,7) |
D
|
False
|
|
sqc4270
|
|
P4222 |
93 |
tetragonal |
{3,8} |
8 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.3.4.4.4.4.3.4}{3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<63.4:176:12 4 5 17 18 30 31 32 110 15 16 41 42 43 88 34 26 27 39 40 132 37 38 121 78 48 49 83 84 74 75 76 154 100 59 60 105 106 96 97 98 143 111 70 71 116 117 176 81 82 118 119 120 122 92 93 127 128 165 103 104 129 130 131 114 115 125 126 144 136 137 149 150 162 163 164 147 148 173 174 175 166 158 159 171 172 169 170,2 25 6 9 8 11 13 36 17 20 19 22 24 28 31 30 33 35 39 42 41 44 46 69 50 53 52 55 57 91 61 64 63 66 68 72 75 74 77 79 113 83 86 85 88 90 94 97 96 99 101 124 105 108 107 110 112 116 119 118 121 123 127 130 129 132 134 157 138 141 140 143 145 168 149 152 151 154 156 160 163 162 165 167 171 174 173 176,23 3 5 7 52 10 55 34 14 16 18 63 21 66 25 27 29 74 32 77 36 38 40 96 43 99 67 47 49 51 54 89 58 60 62 65 69 71 73 76 111 80 82 84 140 87 143 91 93 95 98 122 102 104 106 151 109 154 113 115 117 162 120 165 124 126 128 173 131 176 155 135 137 139 142 166 146 148 150 153 157 159 161 164 168 170 172 175:4 3 4 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 3 4 3 4 3 4,3 8 3 8 8 8 3 3 3 8 3 8 8 8 3 3> {(2, 175): 't1^-1', (0, 117): 'tau2*t3', (0, 55): 't2', (2, 43): 't1', (0, 63): 't2*tau3^-1', (0, 30): 't1^-1', (2, 172): 't1^-1', (0, 151): 't3*tau2', (0, 163): 't1*tau3*t2^-1', (2, 40): 't1', (2, 55): 't2*tau3^-1', (0, 39): 't1', (2, 22): 't1^-1', (0, 115): 'tau2', (0, 53): 't3*tau2', (0, 126): 'tau3^-1', (0, 171): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 167): 'tau2^-1*t3^-1', (0, 152): 't3*tau2', (0, 164): 't1', (0, 61): 't2', (0, 40): 't1', (0, 149): 'tau1', (0, 116): 'tau2', (0, 161): 'tau2*t3', (0, 128): 'tau3^-1*t2', (0, 172): 't1^-1*tau3^-1*t2', (0, 143): 'tau1', (0, 110): 'tau2', (1, 68): 'tau2^-1*t3^-1', (0, 121): 'tau3^-1', (0, 162): 't1*tau3*t2^-1', (0, 38): 't1', (0, 52): 't3*tau2', (0, 97): 'tau3*t2^-1', (0, 170): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 31): 't1^-1', (2, 165): 'tau2^-1*t3^-1', (1, 156): 't1*tau3*t2^-1', (2, 132): 't2*tau3^-1*t1^-1', (2, 66): 'tau2^-1*t3^-1', (0, 49): 't3', (1, 24): 't1^-1', (0, 60): 't2', (1, 90): 'tau3*t2^-1', (0, 148): 'tau1', (0, 131): 't1', (0, 50): 't3', (0, 127): 'tau3^-1', (0, 33): 't1', (0, 44): 't3', (0, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', }