U-tiling: UQC2239
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1738 |
*22222 |
(2,6,4) |
{5,6} |
{4.4.3.4.4}{4.4.4.4.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9674
|
|
P4/mmm |
123 |
tetragonal |
{5,5} |
16 |
(2,6) |
G
|
False
|
|
sqc10158
|
|
I4122 |
98 |
tetragonal |
{6,5} |
16 |
(2,7) |
D
|
False
|
|
sqc4007
|
|
P4222 |
93 |
tetragonal |
{6,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {5,6} |
2D vertex symbol | {4.4.3.4.4}{4.4.4.4.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<65.3:176:23 4 5 28 29 19 31 32 55 34 15 16 39 40 42 43 66 26 27 41 77 37 38 99 67 48 49 72 73 85 75 76 89 59 60 94 95 107 97 98 70 71 118 111 81 82 116 117 119 120 143 92 93 129 122 103 104 127 128 130 131 154 114 115 165 125 126 176 155 136 137 160 161 151 163 164 166 147 148 171 172 174 175 158 159 173 169 170,2 9 26 6 8 11 13 20 37 17 19 22 24 31 28 30 33 35 42 39 41 44 46 53 70 50 52 55 57 64 92 61 63 66 68 75 72 74 77 79 86 114 83 85 88 90 97 94 96 99 101 108 125 105 107 110 112 119 116 118 121 123 130 127 129 132 134 141 158 138 140 143 145 152 169 149 151 154 156 163 160 162 165 167 174 171 173 176,100 3 5 7 30 10 110 78 14 16 18 41 21 88 122 25 27 29 32 132 111 36 38 40 43 121 144 47 49 51 74 54 154 133 58 60 62 96 65 143 166 69 71 73 76 176 80 82 84 118 87 155 91 93 95 98 165 102 104 106 129 109 113 115 117 120 124 126 128 131 135 137 139 162 142 146 148 150 173 153 157 159 161 164 168 170 172 175:3 4 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4,6 5 6 5 6 6 6 5 6 5 6 5 6 5 5 5> {(0, 41): 't1', (0, 117): 'tau2', (0, 55): 't2*tau3^-1', (0, 173): 't1^-1*tau3^-1*t2', (0, 22): 't1^-1', (1, 157): 't1*tau3*t2^-1', (2, 98): 't1^-1', (0, 154): 't1*tau3*t2^-1', (2, 32): 't1^-1', (1, 25): 't1^-1', (1, 91): 'tau3*t2^-1', (0, 42): 't1', (2, 139): 't2*tau3^-1*t1^-1', (0, 118): 'tau2*t3', (0, 163): 'tau2*t3', (0, 130): 'tau3^-1*t2', (0, 174): 't1^-1*tau3^-1*t2', (0, 39): 't1', (2, 22): 't1^-1', (0, 115): 'tau2*t3', (0, 159): 'tau2*t3', (0, 126): 'tau3^-1*t2', (0, 171): 't1^-1*tau3^-1*t2', (0, 40): 't1', (2, 88): 't1^-1', (0, 116): 'tau2*t3', (0, 128): 'tau3^-1', (0, 172): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 51): 't3', (0, 62): 't2', (0, 107): 't2^-1*tau3', (0, 150): 'tau1', (0, 162): 'tau2*t3', (0, 38): 't1', (0, 170): 't1^-1*tau3^-1*t2', (2, 62): 't2*tau3^-1', (2, 29): 't1^-1', (2, 150): 't3*tau2', (2, 51): 't3*tau2', (0, 43): 't1', (0, 119): 'tau2*t3', (0, 160): 'tau2*t3', (1, 168): 'tau2^-1*t3^-1', (0, 175): 't1^-1', (0, 127): 'tau3^-1*t2', (1, 47): 't3*tau2', (0, 44): 't3*tau2', (0, 165): 'tau2^-1*t3^-1', }