| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,6,4) |
| Vertex degrees | {5,6} |
| 2D vertex symbol | {4.4.3.4.4}{4.4.4.4.3.3} |
| Delaney-Dress Symbol | <1738.2:11:1 2 3 5 7 8 9 10 11,2 4 9 6 8 11,1 3 6 7 8 10 11:4 4 3 4,5 6> |
| Dual net | hqc1782 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc611 | Pmmm | 47 | orthorhombic | {6,5} | 4 | (2,6) | |
|
sqc4278 | Fmmm | 69 | orthorhombic | {5,6} | 8 | (2,6) | |
|
sqc4279 | Fmmm | 69 | orthorhombic | {5,6} | 8 | (2,6) | |
|
sqc10532 | P4/mmm | 123 | tetragonal | {6,5} | 16 | (2,6) | |
|
sqc10152 | I4122 | 98 | tetragonal | {6,5} | 16 | (2,7) | |
|
sqc10158 | I4122 | 98 | tetragonal | {6,5} | 16 | (2,7) | |
|
sqc10286 | Fddd | 70 | orthorhombic | {6,5} | 16 | (2,7) | |
|
sqc10293 | I4122 | 98 | tetragonal | {6,5} | 16 | (2,7) | |
|
sqc10294 | Fddd | 70 | orthorhombic | {6,5} | 16 | (2,7) | |
|
sqc10295 | Fddd | 70 | orthorhombic | {6,5} | 16 | (2,7) | |
|
sqc10303 | I4122 | 98 | tetragonal | {6,5} | 16 | (2,7) | |
|
sqc10304 | Fddd | 70 | orthorhombic | {6,5} | 16 | (2,7) | |
|
sqc10305 | Fddd | 70 | orthorhombic | {6,5} | 16 | (2,7) | |
|
sqc10533 | I4122 | 98 | tetragonal | {6,5} | 16 | (2,7) | |
|
sqc4006 | P4222 | 93 | tetragonal | {5,6} | 8 | (2,6) | |
|
sqc4007 | P4222 | 93 | tetragonal | {6,5} | 8 | (2,6) | |
|
sqc4280 | Cmma | 67 | orthorhombic | {6,5} | 8 | (2,6) | |
|
sqc4314 | P4222 | 93 | tetragonal | {6,5} | 8 | (2,6) | |
|
sqc4315 | Cmma | 67 | orthorhombic | {6,5} | 8 | (2,6) | |
|
sqc4317 | P4222 | 93 | tetragonal | {6,5} | 8 | (2,6) | |
|
sqc4320 | Cmma | 67 | orthorhombic | {6,5} | 8 | (2,6) | |
|
sqc4587 | P4222 | 93 | tetragonal | {6,5} | 8 | (2,6) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC2238 | *22222a | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc9382
|
sqc10152
|
sqc4006
|
![]() |
UQC2239 | *22222a | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc9674
|
sqc10158
|
sqc4007
|
![]() |
UQC2240 | *22222b | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc3739
|
sqc10294
|
sqc4315
|
![]() |
UQC2241 | *22222b | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc611
|
sqc10304
|
sqc4280
|
![]() |
UQC2242 | *22222b | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc4278
|
sqc10295
|
sqc611
|
![]() |
UQC2243 | *22222b | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc4279
|
sqc10305
|
sqc611
|
![]() |
UQC2244 | *22222b | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc3737
|
sqc10286
|
sqc4320
|
![]() |
UQC2245 | *22222a | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc9664
|
sqc10303
|
sqc4317
|
![]() |
UQC2246 | *22222a | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc10532
|
sqc10533
|
sqc4587
|
![]() |
UQC2247 | *22222a | (2,6,4) | {5,6} | {4.4.3.4.4}{4.4.4.4.3.3} |
sqc9796
|
sqc10293
|
sqc4314
|