U-tiling: UQC2245
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1738 |
*22222 |
(2,6,4) |
{5,6} |
{4.4.3.4.4}{4.4.4.4.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9664
|
|
P4/mmm |
123 |
tetragonal |
{6,4} |
16 |
(2,6) |
G
|
False
|
|
sqc10303
|
|
I4122 |
98 |
tetragonal |
{6,5} |
16 |
(2,7) |
D
|
False
|
|
sqc4317
|
|
P4222 |
93 |
tetragonal |
{6,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {5,6} |
2D vertex symbol | {4.4.3.4.4}{4.4.4.4.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<65.5:176:23 4 5 105 106 52 108 109 33 34 15 16 83 84 63 86 87 44 26 27 127 128 74 130 131 37 38 116 117 96 119 120 67 48 49 149 150 152 153 77 89 59 60 138 139 141 142 99 70 71 171 172 174 175 111 81 82 140 121 92 93 160 161 163 164 122 103 104 151 132 114 115 162 125 126 173 155 136 137 165 166 147 148 176 158 159 169 170,2 9 26 6 8 11 13 20 37 17 19 22 24 31 28 30 33 35 42 39 41 44 46 53 70 50 52 55 57 64 92 61 63 66 68 75 72 74 77 79 86 114 83 85 88 90 97 94 96 99 101 108 125 105 107 110 112 119 116 118 121 123 130 127 129 132 134 141 158 138 140 143 145 152 169 149 151 154 156 163 160 162 165 167 174 171 173 176,12 3 5 7 30 10 22 14 16 18 41 21 34 25 27 29 32 44 36 38 40 43 78 47 49 51 74 54 88 100 58 60 62 96 65 110 111 69 71 73 76 121 80 82 84 118 87 122 91 93 95 98 132 102 104 106 129 109 113 115 117 120 124 126 128 131 144 135 137 139 162 142 154 146 148 150 173 153 166 157 159 161 164 176 168 170 172 175:3 4 4 4 3 4 4 4 4 4 4 4 3 4 4 3 4 4 4 3 4 3 3 3,6 5 5 6 6 5 6 5 6 5 6 5 6 5 5 6> {(2, 175): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 142): 'tau1^-1', (2, 109): 't2^-1', (0, 129): 't1', (2, 43): 't1', (1, 157): 'tau2*t3', (2, 98): 'tau3', (0, 154): 'tau2*t3', (2, 172): 't1^-1*tau3^-1*t2', (0, 163): 't1', (2, 106): 't2^-1*tau3', (0, 130): 't1', (2, 40): 't1', (0, 27): 't1^-1', (2, 55): 't2', (2, 161): 'tau2*t3', (0, 159): 't1', (0, 32): 't1^-1', (0, 164): 't1*tau3*t2^-1', (0, 28): 't1^-1', (2, 121): 'tau3^-1', (0, 40): 't1', (0, 54): 't3*tau2', (0, 172): 't1^-1', (0, 110): 'tau2*t3', (0, 121): 'tau3^-1*t2', (0, 162): 't1', (2, 54): 't3', (2, 143): 'tau1', (2, 110): 'tau2', (1, 113): 'tau2*t3', (1, 36): 't1', (2, 44): 't3', (2, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 33): 't1', (2, 117): 'tau2*t3', (2, 120): 'tau2', (0, 160): 't1', (1, 168): 't1^-1*tau3^-1*t2', (1, 124): 'tau3^-1*t2', (0, 98): 'tau3*t2^-1', (0, 175): 'tau2^-1*t3^-1', (0, 33): 't1', (0, 165): 't1^-1*tau3^-1*t2', }