U-tiling: UQC2247
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1738 |
*22222 |
(2,6,4) |
{5,6} |
{4.4.3.4.4}{4.4.4.4.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9796
|
|
P4/mmm |
123 |
tetragonal |
{5,5} |
16 |
(2,6) |
G
|
False
|
|
sqc10293
|
|
I4122 |
98 |
tetragonal |
{6,5} |
16 |
(2,7) |
D
|
False
|
|
sqc4314
|
|
P4222 |
93 |
tetragonal |
{6,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {5,6} |
2D vertex symbol | {4.4.3.4.4}{4.4.4.4.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<65.4:176:12 4 5 50 51 30 53 54 110 15 16 61 62 41 64 65 88 34 26 27 72 73 75 76 132 37 38 94 95 97 98 121 78 48 49 74 154 100 59 60 96 143 111 70 71 176 81 82 138 139 118 141 142 122 92 93 165 103 104 149 150 129 152 153 114 115 160 161 163 164 125 126 171 172 174 175 144 136 137 162 147 148 173 166 158 159 169 170,2 9 15 6 8 11 13 20 17 19 22 24 31 37 28 30 33 35 42 39 41 44 46 53 81 50 52 55 57 64 103 61 63 66 68 75 114 72 74 77 79 86 83 85 88 90 97 125 94 96 99 101 108 105 107 110 112 119 116 118 121 123 130 127 129 132 134 141 147 138 140 143 145 152 149 151 154 156 163 169 160 162 165 167 174 171 173 176,23 3 5 7 19 10 33 34 14 16 18 21 44 25 27 29 41 32 36 38 40 43 67 47 49 51 85 54 77 89 58 60 62 107 65 99 69 71 73 118 76 111 80 82 84 87 121 91 93 95 129 98 122 102 104 106 109 132 113 115 117 120 124 126 128 131 155 135 137 139 151 142 165 166 146 148 150 153 176 157 159 161 173 164 168 170 172 175:3 4 4 4 4 4 4 3 4 4 4 4 3 3 3 4 4 3 4 4 4 4 3 3,6 5 6 5 6 5 6 5 5 6 5 6 6 5 6 5> {(0, 41): 't1', (0, 117): 'tau2*t3', (0, 55): 't2', (0, 173): 't1^-1', (2, 164): 't1*tau3*t2^-1', (2, 172): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 44): 't3*tau2', (2, 98): 'tau3*t2^-1', (2, 32): 't1^-1', (0, 42): 't1', (0, 130): 't1', (1, 102): 't2^-1', (2, 40): 't1', (2, 55): 't2*tau3^-1', (0, 39): 't1', (2, 22): 't1^-1', (0, 171): 't1^-1', (0, 164): 't1', (2, 154): 't1*tau3*t2^-1', (0, 40): 't1', (0, 161): 'tau2*t3', (0, 172): 't1^-1*tau3^-1*t2', (0, 143): 'tau1', (0, 110): 'tau2', (0, 121): 'tau3^-1', (2, 54): 't3*tau2', (0, 38): 't1', (1, 113): 'tau2', (1, 36): 't1', (0, 170): 't1^-1', (2, 165): 'tau2^-1*t3^-1', (2, 95): 'tau3', (2, 62): 't2', (2, 150): 'tau1', (2, 117): 'tau2', (2, 153): 't3*tau2', (2, 51): 't3', (1, 168): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 131): 't1', (1, 124): 'tau3^-1', (1, 80): 't3^-1', (0, 33): 't1', (0, 106): 't2^-1*tau3', (1, 146): 'tau1', (0, 44): 't3', (0, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', }