U-tiling: UQC2302
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1960 |
*22222 |
(2,6,4) |
{4,4} |
{4.8.4.4}{4.4.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5571
|
|
Fmmm |
69 |
orthorhombic |
{4,4} |
12 |
(2,6) |
G
|
False
|
|
sqc11190
|
|
Fddd |
70 |
orthorhombic |
{4,4,4} |
24 |
(3,7) |
D
|
False
|
|
sqc5573
|
|
Cmma |
67 |
orthorhombic |
{4,4} |
12 |
(2,6) |
Topological data
Vertex degrees | {4,4} |
2D vertex symbol | {4.8.4.4}{4.4.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.3:192:49 4 5 54 55 20 21 34 35 120 61 16 17 66 67 46 47 144 73 28 29 78 79 44 45 168 85 40 41 90 91 192 52 53 68 69 82 83 132 64 65 94 95 108 76 77 92 93 180 88 89 156 133 100 101 138 139 128 129 154 155 121 112 113 126 127 140 141 166 167 124 125 178 179 136 137 190 191 181 148 149 186 187 176 177 169 160 161 174 175 188 189 172 173 184 185,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,97 3 5 7 9 11 108 121 15 17 19 21 23 132 145 27 29 31 33 35 156 169 39 41 43 45 47 180 133 51 53 55 57 59 144 109 63 65 67 69 71 120 181 75 77 79 81 83 192 157 87 89 91 93 95 168 99 101 103 105 107 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191:4 8 4 4 4 8 4 4 4 8 4 8 4 4 4 4 4 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 29): 't1^-1', (0, 30): 't1^-1', (0, 188): 't2*tau1*t3^-1', (0, 41): 't1^-1', (2, 84): 'tau2', (0, 11): 't3', (2, 179): 'tau3^-1', (0, 190): 't2', (0, 107): 't3', (0, 127): 'tau1^-1', (0, 128): 'tau1^-1', (0, 173): 'tau3^-1*t1^-1*tau2', (0, 140): 'tau1', (0, 185): 'tau3*t1*tau2^-1', (0, 162): 'tau2^-1*t1*tau3', (0, 175): 't2^-1*tau1^-1*t3', (0, 24): 't1^-1', (2, 72): 'tau3^-1', (0, 59): 't2^-1', (0, 36): 't1^-1', (0, 154): 't3^-1', (0, 176): 't2^-1*tau1^-1*t3', (0, 189): 't2', (0, 166): 't3', (0, 178): 't2^-1', (2, 191): 'tau3', (0, 168): 'tau3^-1*t1^-1*tau2', (2, 24): 'tau2^-1', (0, 139): 'tau1', (0, 180): 'tau3*t1*tau2^-1', (2, 167): 'tau2^-1', (0, 42): 't1^-1', (0, 23): 't2', (2, 35): 'tau2^-1', (0, 163): 't3*tau1^-1*t2^-1', (0, 153): 't3^-1', (0, 165): 't3', (2, 168): 'tau3^-1', (0, 177): 't2^-1', (0, 186): 'tau3*t1*tau2^-1', }