U-tiling: UQC2353
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2002 |
*22222 |
(2,6,4) |
{3,6} |
{4.4.8}{8.4.4.8.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4619
|
|
P4/mmm |
123 |
tetragonal |
{3,5} |
12 |
(2,5) |
G
|
False
|
|
sqc10804
|
|
I4122 |
98 |
tetragonal |
{6,3,3} |
24 |
(3,7) |
D
|
False
|
|
sqc5073
|
|
P4222 |
93 |
tetragonal |
{3,6} |
12 |
(2,6) |
Topological data
Vertex degrees | {6,3} |
2D vertex symbol | {4.4.8}{8.4.4.8.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<12.1:192:49 110 111 6 7 32 33 22 23 24 61 86 87 18 19 44 45 73 134 135 30 31 46 47 48 97 122 123 42 43 158 159 54 55 80 81 94 95 96 146 147 66 67 104 105 118 119 120 182 183 78 79 130 131 132 145 90 91 128 129 170 171 102 103 142 143 144 157 114 115 140 141 169 126 127 181 138 139 150 151 176 177 166 167 168 162 163 188 189 174 175 190 191 192 186 187,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,25 3 5 7 9 11 36 37 15 17 19 21 23 48 27 29 31 33 35 39 41 43 45 47 73 51 53 55 57 59 84 97 63 65 67 69 71 108 75 77 79 81 83 121 87 89 91 93 95 132 99 101 103 105 107 133 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 180 181 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191:4 8 4 4 4 8 4 4 4 8 4 4 8 4 4 4 4 4 4 4,6 3 6 3 3 3 6 3 6 3 3 6 3 3 6 3 3 3 6 3 6 3 3 3> {(0, 103): 'tau3*t2^-1', (2, 191): 't1^-1*tau3^-1*t2', (0, 117): 't2^-1', (0, 190): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 129): 'tau2', (0, 55): 't3*tau2', (2, 144): 't3^-1*tau2^-1', (0, 187): 'tau2^-1*t3^-1', (0, 166): 'tau1', (0, 169): 't1', (0, 104): 'tau3*t2^-1', (0, 180): 't1^-1', (0, 118): 't2^-1', (0, 130): 'tau2', (0, 56): 't3*tau2', (0, 188): 'tau2^-1*t3^-1', (2, 179): 'tau2*t3', (0, 32): 't1^-1', (0, 47): 't1', (2, 108): 't2^-1*tau3', (0, 143): 'tau3^-1', (2, 47): 't1', (0, 45): 't1', (2, 36): 't1', (0, 133): 't1', (0, 59): 't3', (0, 176): 't1*tau3*t2^-1', (0, 191): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 170): 't1', (0, 141): 'tau3^-1', (2, 95): 't3^-1*tau2^-1', (0, 46): 't1', (0, 167): 'tau1', (0, 134): 't1', (0, 31): 't1^-1', (2, 120): 'tau2*t3', (0, 119): 't2^-1', (0, 131): 'tau2', (0, 57): 't3', (0, 175): 't1*tau3*t2^-1', (0, 142): 'tau3^-1', (0, 36): 't1', (0, 189): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 180): 't1^-1*tau3^-1*t2', (0, 165): 'tau1', (2, 119): 't2^-1*tau3', (0, 58): 't3', }