U-tiling: UQC2434
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1614 |
*222222 |
(2,5,5) |
{9,4} |
{4.4.4.3.4.3.4.4.4}{3.4.3.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc4083
|
|
I212121 |
24 |
orthorhombic |
{9,4} |
6 |
(2,6) |
D
|
False
|
|
sqc668
|
|
P222 |
16 |
orthorhombic |
{4,9} |
3 |
(2,5) |
Topological data
Vertex degrees | {9,4} |
2D vertex symbol | {4.4.4.3.4.3.4.4.4}{3.4.3.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<99.1:88:23 46 47 15 16 28 29 10 11 34 57 58 39 40 21 22 68 69 37 38 32 33 79 80 43 44 67 59 60 72 73 54 55 78 83 84 65 66 81 82 76 77 87 88,2 4 6 8 20 32 55 13 15 17 19 43 66 24 26 28 30 42 77 35 37 39 41 88 46 48 50 52 64 76 57 59 61 63 87 68 70 72 74 86 79 81 83 85,12 3 5 7 9 11 14 16 18 20 22 34 25 27 29 31 33 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 78 69 71 73 75 77 80 82 84 86 88:4 4 4 3 4 4 3 4 4 4 3 3,9 4 4 9 9 9> {(0, 80): 'tau2^-1*t3^-1', (1, 87): 't1^-1*tau3^-1*t2*tau1*t3^-1', (0, 55): 't1', (1, 42): 'tau2^-1*t1', (0, 81): 'tau2^-1*t3^-1', (0, 38): 'tau2^-1*t1', (1, 86): 'tau2^-1*t3^-1*tau1*t2', (1, 76): 'tau1*t3^-1', (2, 77): 't1^-1*tau3^-1*t2', (2, 44): 't2^-1*tau3', (0, 56): 't1', (0, 27): 't3', (0, 49): 't2^-1*tau1^-1', (1, 63): 'tau3^-1*t2', (0, 39): 'tau2^-1*t1', (1, 85): 't1^-1*tau3^-1*t2', (1, 54): 't2^-1', (0, 60): 't2^-1*tau1^-1*t3*tau2', (0, 57): 't1', (0, 14): 't1^-1', (0, 36): 'tau2^-1*t3^-1', (1, 31): 't3', (1, 53): 't2^-1*tau1^-1', (0, 61): 't2^-1*tau1^-1*t3*tau2', (0, 28): 't3', (0, 50): 't2^-1*tau1^-1', (0, 15): 't1^-1', (0, 37): 'tau2^-1*t3^-1', (1, 65): 'tau3^-1', }