P222

Number16
Symmetry Classorthorhombic
ChiralY

s-nets

180 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc51 P222 16 orthorhombic {8,3} 3 (2,4)
Full image sqc71 P222 16 orthorhombic {6,8} 2 (2,4)
Full image sqc83 P222 16 orthorhombic {6,10} 2 (2,4)
Full image sqc98 P222 16 orthorhombic {4,12} 2 (2,4)
Full image sqc110 P222 16 orthorhombic {8,4} 3 (2,5)
Full image sqc120 P222 16 orthorhombic {6,4,6} 3 (3,4)
Full image sqc132 P222 16 orthorhombic {6,5} 3 (2,4)
Full image sqc133 P222 16 orthorhombic {6,3,4} 4 (3,4)
Full image sqc150 P222 16 orthorhombic {6,4} 3 (2,5)
Full image sqc167 P222 16 orthorhombic {8,4,4} 3 (3,4)
Full image sqc174 P222 16 orthorhombic {4,6} 3 (2,4)
Full image sqc186 P222 16 orthorhombic {4,4,4} 4 (3,4)
Full image sqc198 P222 16 orthorhombic {12,3} 3 (2,5)
Full image sqc209 P222 16 orthorhombic {10,4} 3 (2,5)
Full image sqc211 P222 16 orthorhombic {3,12} 3 (2,5)
Full image sqc216 P222 16 orthorhombic {12,6} 2 (2,5)
Full image sqc228 P222 16 orthorhombic {5,8} 3 (2,5)
Full image sqc229 P222 16 orthorhombic {3,4,8} 4 (3,5)
Full image sqc243 P222 16 orthorhombic {4,8,6} 3 (3,5)
Full image sqc256 P222 16 orthorhombic {4,7} 3 (2,4)
Full image sqc258 P222 16 orthorhombic {4,8,3} 4 (3,5)
Full image sqc261 P222 16 orthorhombic {4,3,8} 4 (3,5)
Full image sqc272 P222 16 orthorhombic {6,6} 3 (2,5)
Full image sqc273 P222 16 orthorhombic {4,6,4} 4 (3,5)
Full image sqc288 P222 16 orthorhombic {6,6} 3 (2,5)
Full image sqc289 P222 16 orthorhombic {6,6} 3 (2,5)
Full image sqc290 P222 16 orthorhombic {6,4,4} 4 (3,5)
Full image sqc291 P222 16 orthorhombic {4,6,4} 4 (3,5)
Full image sqc299 P222 16 orthorhombic {4,4,3} 5 (3,5)
Full image sqc302 P222 16 orthorhombic {4,4,3} 5 (3,5)
Full image sqc307 P222 16 orthorhombic {3,4,4} 5 (3,5)
Full image sqc313 P222 16 orthorhombic {6,3} 4 (2,5)
Full image sqc314 P222 16 orthorhombic {6,4,4} 4 (3,5)
Full image sqc318 P222 16 orthorhombic {6,3} 4 (2,5)
Full image sqc321 P222 16 orthorhombic {4,5} 4 (2,5)
Full image sqc342 P222 16 orthorhombic {10,5} 3 (2,5)
Full image sqc346 P222 16 orthorhombic {6,8} 3 (2,6)
Full image sqc347 P222 16 orthorhombic {12,4} 3 (2,6)
Full image sqc363 P222 16 orthorhombic {6,8} 3 (2,6)
Full image sqc364 P222 16 orthorhombic {8,4,4} 4 (3,6)
Full image sqc377 P222 16 orthorhombic {4,8} 3 (2,6)
Full image sqc388 P222 16 orthorhombic {6,7} 3 (2,5)
Full image sqc393 P222 16 orthorhombic {8,4} 3 (2,5)
Full image sqc405 P222 16 orthorhombic {8,4,4} 4 (3,6)
Full image sqc410 P222 16 orthorhombic {6,7} 3 (2,5)
Full image sqc411 P222 16 orthorhombic {6,7} 3 (2,5)
Full image sqc415 P222 16 orthorhombic {3,7} 4 (2,5)
Full image sqc427 P222 16 orthorhombic {6,3,4,4} 5 (4,5)
Full image sqc463 P222 16 orthorhombic {6,4} 4 (2,6)
Full image sqc467 P222 16 orthorhombic {4,4,4,4} 5 (4,6)
Full image sqc469 P222 16 orthorhombic {4,4,4} 5 (3,6)
Full image sqc471 P222 16 orthorhombic {4,4,4} 5 (3,6)
Full image sqc478 P222 16 orthorhombic {8,4} 3 (2,5)
Full image sqc487 P222 16 orthorhombic {4,6} 4 (2,6)
Full image sqc488 P222 16 orthorhombic {4,8} 3 (2,5)
Full image sqc491 P222 16 orthorhombic {6,4} 4 (2,6)
Full image sqc503 P222 16 orthorhombic {6,3,4,4} 5 (4,5)
Full image sqc524 P222 16 orthorhombic {4,4,4,4} 5 (4,5)
Full image sqc525 P222 16 orthorhombic {4,4,4,4} 5 (4,5)
Full image sqc529 P222 16 orthorhombic {3,16} 3 (2,6)
Full image sqc534 P222 16 orthorhombic {5,12} 3 (2,6)
Full image sqc538 P222 16 orthorhombic {6,10} 3 (2,6)
Full image sqc550 P222 16 orthorhombic {8,7} 3 (2,6)
Full image sqc582 P222 16 orthorhombic {6,8} 3 (2,6)
Full image sqc585 P222 16 orthorhombic {8,3} 4 (2,6)
Full image sqc586 P222 16 orthorhombic {8,3} 4 (2,6)
Full image sqc598 P222 16 orthorhombic {7,4} 4 (2,6)
Full image sqc601 P222 16 orthorhombic {7,4} 4 (2,6)
Full image sqc602 P222 16 orthorhombic {4,3,8,4} 5 (4,6)
Full image sqc610 P222 16 orthorhombic {4,4,6,4} 5 (4,6)
Full image sqc625 P222 16 orthorhombic {4,3,4,4} 6 (4,6)
Full image sqc630 P222 16 orthorhombic {4,4,3,4} 6 (4,6)
Full image sqc640 P222 16 orthorhombic {3,4,4,4} 6 (4,6)
Full image sqc641 P222 16 orthorhombic {8,6} 3 (2,6)
Full image sqc642 P222 16 orthorhombic {6,4,4,4} 5 (4,6)
Full image sqc646 P222 16 orthorhombic {4,6} 5 (2,5)
Full image sqc655 P222 16 orthorhombic {4,3,4,4} 6 (4,6)
Full image sqc657 P222 16 orthorhombic {4,3,4,4} 6 (4,6)
Full image sqc661 P222 16 orthorhombic {4,4,4,3} 6 (4,6)
Full image sqc664 P222 16 orthorhombic {3,4,4,4} 6 (4,6)
Full image sqc666 P222 16 orthorhombic {3,4,4,4} 6 (4,6)
Full image sqc668 P222 16 orthorhombic {4,9} 3 (2,5)
Full image sqc669 P222 16 orthorhombic {4,6,8,4} 4 (4,5)
Full image sqc670 P222 16 orthorhombic {8,6} 3 (2,6)
Full image sqc671 P222 16 orthorhombic {8,3} 4 (2,6)
Full image sqc674 P222 16 orthorhombic {3,8} 4 (2,6)
Full image sqc677 P222 16 orthorhombic {5,6} 4 (2,6)
Full image sqc680 P222 16 orthorhombic {4,8,4,3} 5 (4,6)
Full image sqc681 P222 16 orthorhombic {6,4,4,4} 5 (4,6)
Full image sqc682 P222 16 orthorhombic {8,3} 4 (2,6)
Full image sqc685 P222 16 orthorhombic {5,6} 4 (2,6)
Full image sqc692 P222 16 orthorhombic {6,5} 4 (2,6)
Full image sqc715 P222 16 orthorhombic {3,12} 5 (2,6)
Full image sqc717 P222 16 orthorhombic {7,10} 3 (2,6)
Full image sqc751 P222 16 orthorhombic {4,8} 5 (2,6)
Full image sqc759 P222 16 orthorhombic {9,3} 4 (2,6)
Full image sqc760 P222 16 orthorhombic {4,8} 4 (2,7)
Full image sqc767 P222 16 orthorhombic {7,5} 4 (2,6)
Full image sqc774 P222 16 orthorhombic {8,4} 4 (2,7)
Full image sqc783 P222 16 orthorhombic {7,5} 4 (2,6)