U-tiling: UQC2517
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1917 |
*22222 |
(2,5,5) |
{5,4} |
{4.6.3.4.4}{3.6.3.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5467
|
|
Fmmm |
69 |
orthorhombic |
{5,4} |
10 |
(2,5) |
G
|
False
|
|
sqc11105
|
|
Fddd |
70 |
orthorhombic |
{4,5,5} |
20 |
(3,6) |
D
|
False
|
|
sqc5463
|
|
Cmma |
67 |
orthorhombic |
{5,4} |
10 |
(2,5) |
Topological data
Vertex degrees | {4,5} |
2D vertex symbol | {4.6.3.4.4}{3.6.3.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<16.4:192:3 4 53 54 103 104 117 118 35 36 15 16 65 66 127 128 141 142 47 48 27 28 77 78 151 152 165 166 39 40 89 90 175 176 189 190 51 52 139 140 129 130 83 84 63 64 115 116 105 106 95 96 75 76 187 188 177 178 87 88 163 164 153 154 99 100 137 138 155 156 111 112 125 126 167 168 123 124 179 180 135 136 191 192 147 148 185 186 159 160 173 174 171 172 183 184,49 14 5 12 7 9 11 61 17 24 19 21 23 73 38 29 36 31 33 35 85 41 48 43 45 47 62 53 60 55 57 59 65 72 67 69 71 86 77 84 79 81 83 89 96 91 93 95 133 122 101 108 103 105 107 121 134 113 120 115 117 119 125 132 127 129 131 137 144 139 141 143 181 170 149 156 151 153 155 169 182 161 168 163 165 167 173 180 175 177 179 185 192 187 189 191,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192:3 6 4 4 4 3 4 4 4 3 4 4 3 4 4 6 4 4 3 6 3 6 3 3,4 5 5 4 5 5 5 5 5 5 4 5 5 5 5 4 5 5 5 5> {(0, 167): 't3', (0, 29): 't1^-1', (0, 179): 't2^-1', (1, 121): 'tau1^-1', (0, 41): 't1^-1', (0, 31): 'tau2^-1', (0, 8): 't3', (0, 190): 't2', (0, 20): 't2', (0, 173): 'tau3^-1*t1^-1*tau2', (0, 185): 'tau3*t1*tau2^-1', (0, 57): 't2^-1', (0, 184): 'tau3*t1*tau2^-1', (0, 175): 'tau3^-1', (1, 109): 'tau1^-1', (0, 155): 't3^-1', (0, 187): 'tau3', (1, 84): 't1', (0, 154): 't3^-1', (0, 105): 't3', (1, 181): 't2*tau1*t3^-1', (0, 166): 't3', (0, 28): 't1^-1', (0, 9): 't3', (0, 178): 't2^-1', (0, 191): 't2', (0, 40): 't1^-1', (0, 21): 't2', (0, 30): 'tau2^-1', (1, 168): 'tau3^-1*t1^-1*tau2', (1, 169): 't2^-1*tau1^-1*t3', (1, 72): 't1', (0, 163): 'tau2^-1', (0, 172): 'tau3^-1*t1^-1*tau2', (0, 104): 't3', (0, 56): 't2^-1', (0, 174): 'tau3^-1', (0, 162): 'tau2^-1', (1, 180): 'tau3*t1*tau2^-1', (0, 186): 'tau3', }