U-tiling: UQC2542
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1925 |
*22222 |
(2,6,5) |
{7,5} |
{4.4.3.3.3.4.4}{3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc10700
|
|
I4122 |
98 |
tetragonal |
{5,7} |
16 |
(2,7) |
D
|
False
|
|
sqc14612
|
|
P4222 |
93 |
tetragonal |
{5,7} |
8 |
(2,6) |
Topological data
Vertex degrees | {7,5} |
2D vertex symbol | {4.4.3.3.3.4.4}{3.3.4.4.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.2:192:109 26 27 6 7 56 57 34 35 24 85 38 39 18 19 68 69 46 47 133 30 31 80 81 48 121 42 43 104 105 157 74 75 54 55 82 83 96 145 98 99 66 67 106 107 120 181 78 79 132 122 123 90 91 152 153 130 131 169 102 103 144 134 135 114 115 164 165 142 143 126 127 176 177 138 139 188 189 170 171 150 151 178 179 168 182 183 162 163 190 191 174 175 192 186 187,2 4 53 30 8 10 12 14 16 65 42 20 22 24 26 28 77 32 34 36 38 40 101 44 46 48 50 52 78 56 58 60 62 64 102 68 70 72 74 76 80 82 84 86 88 149 126 92 94 96 98 100 104 106 108 110 112 161 138 116 118 120 122 124 173 128 130 132 134 136 185 140 142 144 146 148 174 152 154 156 158 160 186 164 166 168 170 172 176 178 180 182 184 188 190 192,49 3 5 7 9 11 36 61 15 17 19 21 23 48 73 27 29 31 33 35 97 39 41 43 45 47 51 53 55 57 59 84 63 65 67 69 71 108 75 77 79 81 83 145 87 89 91 93 95 132 99 101 103 105 107 157 111 113 115 117 119 144 169 123 125 127 129 131 181 135 137 139 141 143 147 149 151 153 155 180 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191:4 3 3 4 4 4 3 3 4 3 3 4 3 4 4 3 4 3 3 4 3 3 4 3 3 3 4 3,5 7 5 7 5 5 7 7 5 7 5 7 5 5 7 7> {(1, 149): 't2*tau3^-1*t1^-1', (1, 185): 'tau2^-1*t3^-1', (1, 77): 'tau2^-1*t3^-1', (0, 117): 't2^-1*tau3', (0, 190): 't1^-1*tau3^-1*t2', (0, 129): 'tau2*t3', (0, 187): 't1^-1', (0, 130): 'tau2*t3', (0, 177): 'tau2*t3', (0, 188): 't1^-1', (2, 179): 't1*tau3*t2^-1', (1, 101): 'tau3*t2^-1', (0, 47): 't1', (0, 61): 't2*tau3^-1', (0, 178): 'tau2*t3', (0, 25): 't1^-1', (0, 143): 'tau3^-1', (0, 169): 't1*tau3*t2^-1', (0, 62): 't2*tau3^-1', (0, 45): 't1', (2, 36): 't1', (1, 29): 't1^-1', (0, 59): 't3', (0, 26): 't1^-1', (1, 184): 't1^-1', (0, 191): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 170): 't1*tau3*t2^-1', (2, 11): 't1', (2, 132): 't1', (0, 46): 't1', (0, 49): 't3*tau2', (0, 167): 'tau1', (0, 181): 'tau2^-1*t3^-1', (0, 43): 't1', (2, 71): 't2*tau3^-1', (0, 119): 't2^-1', (0, 131): 'tau2', (2, 191): 'tau2^-1*t3^-1', (0, 142): 'tau3^-1*t2', (2, 59): 't3*tau2', (0, 50): 't3*tau2', (0, 168): 't1', (1, 100): 't1^-1', (0, 182): 'tau2^-1*t3^-1', (0, 44): 't1', (0, 165): 't2^-1*tau3*t1', (0, 132): 't1', }