Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,6,5) |
Vertex degrees | {7,5} |
2D vertex symbol | {4.4.3.3.3.4.4}{3.3.4.4.3} |
Delaney-Dress Symbol | <1925.2:12:1 2 3 4 5 7 9 10 11 12,2 4 6 7 8 10 12,1 3 5 8 9 11 12:4 4 3 3 4,7 5> |
Dual net | hqc2026 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc749 | Pmmm | 47 | orthorhombic | {5,7} | 4 | (2,6) | ||
sqc5085 | Fmmm | 69 | orthorhombic | {7,5} | 8 | (2,6) | ||
sqc10765 | P4/mmm | 123 | tetragonal | {5,7} | 16 | (2,6) | ||
sqc10699 | I4122 | 98 | tetragonal | {5,7} | 16 | (2,7) | ||
sqc10700 | I4122 | 98 | tetragonal | {5,7} | 16 | (2,7) | ||
sqc10758 | I4122 | 98 | tetragonal | {5,7} | 16 | (2,7) | ||
sqc10766 | I4122 | 98 | tetragonal | {5,7} | 16 | (2,7) | ||
sqc10782 | Fddd | 70 | orthorhombic | {5,7} | 16 | (2,7) | ||
sqc10788 | Fddd | 70 | orthorhombic | {5,7} | 16 | (2,7) | ||
sqc10798 | I4122 | 98 | tetragonal | {5,7} | 16 | (2,7) | ||
sqc10872 | Fddd | 70 | orthorhombic | {5,7} | 16 | (2,7) | ||
sqc10874 | Fddd | 70 | orthorhombic | {5,7} | 16 | (2,7) | ||
sqc10875 | Fddd | 70 | orthorhombic | {5,7} | 16 | (2,7) | ||
sqc766 | Pmmm | 47 | orthorhombic | {5,7} | 4 | (2,6) | ||
sqc4790 | P4222 | 93 | tetragonal | {5,7} | 8 | (2,6) | ||
sqc5071 | P4222 | 93 | tetragonal | {7,5} | 8 | (2,6) | ||
sqc5086 | Cmma | 67 | orthorhombic | {5,7} | 8 | (2,6) | ||
sqc5130 | Cmma | 67 | orthorhombic | {7,5} | 8 | (2,6) | ||
sqc5321 | P4222 | 93 | tetragonal | {5,7} | 8 | (2,6) | ||
sqc14611 | P4222 | 93 | tetragonal | {7,5} | 8 | (2,6) | ||
sqc14612 | P4222 | 93 | tetragonal | {5,7} | 8 | (2,6) | ||
sqc14624 | Pmmm | 47 | orthorhombic | {7,5} | 4 | (2,6) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC2542 | *22222a | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | No s‑net | sqc10700 | sqc14612 | |
UQC2543 | *22222a | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | sqc4105 | sqc10699 | sqc4790 | |
UQC2544 | *22222a | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | sqc10531 | sqc10798 | sqc5071 | |
UQC2545 | *22222a | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | sqc10765 | sqc10766 | sqc5321 | |
UQC2546 | *22222a | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | No s‑net | sqc10758 | sqc14611 | |
UQC2547 | *22222b | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | sqc749 | sqc10782 | sqc5086 | |
UQC2548 | *22222b | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | sqc5085 | sqc10874 | sqc749 | |
UQC2549 | *22222b | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | No s‑net | sqc10788 | sqc14624 | |
UQC2550 | *22222b | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | sqc749 | sqc10875 | sqc5130 | |
UQC2551 | *22222b | (2,6,5) | {7,5} | {4.4.3.3.3.4.4}{3.3.4.4.3} | sqc4274 | sqc10872 | sqc766 |