h-net: hqc1925


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,6,5)
Vertex degrees{7,5}
2D vertex symbol {4.4.3.3.3.4.4}{3.3.4.4.3}
Delaney-Dress Symbol <1925.2:12:1 2 3 4 5 7 9 10 11 12,2 4 6 7 8 10 12,1 3 5 8 9 11 12:4 4 3 3 4,7 5>
Dual net hqc2026

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc749 Pmmm 47 orthorhombic {5,7} 4 (2,6)
Full image sqc5085 Fmmm 69 orthorhombic {7,5} 8 (2,6)
Full image sqc10765 P4/mmm 123 tetragonal {5,7} 16 (2,6)
Full image sqc10699 I4122 98 tetragonal {5,7} 16 (2,7)
Full image sqc10700 I4122 98 tetragonal {5,7} 16 (2,7)
Full image sqc10758 I4122 98 tetragonal {5,7} 16 (2,7)
Full image sqc10766 I4122 98 tetragonal {5,7} 16 (2,7)
Full image sqc10782 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10788 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10798 I4122 98 tetragonal {5,7} 16 (2,7)
Full image sqc10872 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10874 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10875 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc766 Pmmm 47 orthorhombic {5,7} 4 (2,6)
Full image sqc4790 P4222 93 tetragonal {5,7} 8 (2,6)
Full image sqc5071 P4222 93 tetragonal {7,5} 8 (2,6)
Full image sqc5086 Cmma 67 orthorhombic {5,7} 8 (2,6)
Full image sqc5130 Cmma 67 orthorhombic {7,5} 8 (2,6)
Full image sqc5321 P4222 93 tetragonal {5,7} 8 (2,6)
Full image sqc14611 P4222 93 tetragonal {7,5} 8 (2,6)
Full image sqc14612 P4222 93 tetragonal {5,7} 8 (2,6)
Full image sqc14624 Pmmm 47 orthorhombic {7,5} 4 (2,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2542 *22222a (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} No s‑net Snet sqc10700 Snet sqc14612
Tiling details UQC2543 *22222a (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} Snet sqc4105 Snet sqc10699 Snet sqc4790
Tiling details UQC2544 *22222a (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} Snet sqc10531 Snet sqc10798 Snet sqc5071
Tiling details UQC2545 *22222a (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} Snet sqc10765 Snet sqc10766 Snet sqc5321
Tiling details UQC2546 *22222a (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} No s‑net Snet sqc10758 Snet sqc14611
Tiling details UQC2547 *22222b (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} Snet sqc749 Snet sqc10782 Snet sqc5086
Tiling details UQC2548 *22222b (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} Snet sqc5085 Snet sqc10874 Snet sqc749
Tiling details UQC2549 *22222b (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} No s‑net Snet sqc10788 Snet sqc14624
Tiling details UQC2550 *22222b (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} Snet sqc749 Snet sqc10875 Snet sqc5130
Tiling details UQC2551 *22222b (2,6,5) {7,5} {4.4.3.3.3.4.4}{3.3.4.4.3} Snet sqc4274 Snet sqc10872 Snet sqc766

Symmetry-lowered hyperbolic tilings