U-tiling: UQC2543
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1925 |
*22222 |
(2,6,5) |
{7,5} |
{4.4.3.3.3.4.4}{3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4105
|
|
P4/mmm |
123 |
tetragonal |
{5,6} |
8 |
(2,5) |
G
|
False
|
|
sqc10699
|
|
I4122 |
98 |
tetragonal |
{5,7} |
16 |
(2,7) |
D
|
False
|
|
sqc4790
|
|
P4222 |
93 |
tetragonal |
{5,7} |
8 |
(2,6) |
Topological data
Vertex degrees | {7,5} |
2D vertex symbol | {4.4.3.3.3.4.4}{3.3.4.4.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.4:192:13 26 27 6 7 32 33 118 119 60 38 39 18 19 44 45 94 95 72 37 30 31 142 143 84 42 43 130 131 108 85 74 75 54 55 80 81 166 167 109 98 99 66 67 104 105 154 155 121 78 79 190 191 122 123 90 91 128 129 156 133 102 103 178 179 134 135 114 115 140 141 168 126 127 180 138 139 192 157 170 171 150 151 176 177 182 183 162 163 188 189 181 174 175 186 187,2 4 29 30 8 10 12 14 16 41 42 20 22 24 26 28 32 34 36 38 40 44 46 48 50 52 77 78 56 58 60 62 64 101 102 68 70 72 74 76 80 82 84 86 88 125 126 92 94 96 98 100 104 106 108 110 112 137 138 116 118 120 122 124 128 130 132 134 136 140 142 144 146 148 173 174 152 154 156 158 160 185 186 164 166 168 170 172 176 178 180 182 184 188 190 192,25 3 5 7 9 11 36 37 15 17 19 21 23 48 27 29 31 33 35 39 41 43 45 47 73 51 53 55 57 59 84 97 63 65 67 69 71 108 75 77 79 81 83 121 87 89 91 93 95 132 99 101 103 105 107 133 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 180 181 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191:4 3 3 4 4 3 3 4 4 4 4 4 3 3 4 4 3 3 4 3 3 3 3 4 3 3 3 3,5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7> {(0, 103): 'tau3*t2^-1', (1, 185): 't1^-1*tau3^-1*t2', (0, 55): 't3*tau2', (0, 187): 'tau2^-1*t3^-1', (0, 48): 't3', (0, 180): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 28): 't1^-1', (0, 56): 't3*tau2', (0, 68): 't2*tau3^-1', (0, 177): 't1', (0, 144): 'tau1^-1', (0, 188): 'tau2^-1*t3^-1', (2, 179): 'tau2*t3', (0, 32): 't1^-1', (0, 109): 't2^-1*tau3', (1, 125): 'tau2*t3', (0, 47): 't1', (0, 178): 't1', (0, 37): 't1', (0, 110): 't2^-1*tau3', (2, 60): 't2*tau3^-1', (0, 169): 'tau2*t3', (0, 121): 'tau2*t3', (1, 148): 't2*tau3^-1*t1^-1', (0, 176): 't1*tau3*t2^-1', (1, 184): 'tau2^-1*t3^-1', (0, 38): 't1', (2, 143): 'tau3^-1*t2', (0, 191): 't1^-1', (1, 173): 'tau2*t3', (0, 158): 't2^-1*tau3*t1', (0, 170): 'tau2*t3', (0, 141): 't1', (1, 41): 't1', (2, 95): 't3^-1*tau2^-1', (2, 168): 't1*tau3*t2^-1', (0, 122): 'tau2*t3', (2, 0): 't1', (0, 60): 't2', (0, 31): 't1^-1', (0, 181): 't1^-1*tau3^-1*t2', (1, 137): 'tau3^-1*t2', (2, 191): 't1^-1*tau3^-1*t2', (0, 175): 't1*tau3*t2^-1', (0, 142): 't1', (0, 36): 't1', (2, 23): 't1^-1', (1, 76): 'tau2^-1*t3^-1', (2, 180): 'tau2^-1*t3^-1', (1, 100): 'tau3*t2^-1', (2, 48): 't3*tau2', (0, 120): 'tau2', (0, 132): 'tau3^-1', }