U-tiling: UQC2546
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1925 |
*22222 |
(2,6,5) |
{7,5} |
{4.4.3.3.3.4.4}{3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc10758
|
|
I4122 |
98 |
tetragonal |
{5,7} |
16 |
(2,7) |
D
|
False
|
|
sqc14611
|
|
P4222 |
93 |
tetragonal |
{7,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {7,5} |
2D vertex symbol | {4.4.3.3.3.4.4}{3.3.4.4.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.1:192:49 110 111 6 7 32 33 22 23 36 61 86 87 18 19 44 45 48 73 134 135 30 31 46 47 97 122 123 42 43 158 159 54 55 80 81 94 95 84 146 147 66 67 104 105 118 119 108 182 183 78 79 130 131 145 90 91 128 129 132 170 171 102 103 142 143 157 114 115 140 141 144 169 126 127 181 138 139 150 151 176 177 166 167 180 162 163 188 189 192 174 175 190 191 186 187,2 4 29 114 8 10 12 14 16 41 90 20 22 24 26 28 138 32 34 36 38 40 126 44 46 48 50 52 77 162 56 58 60 62 64 101 150 68 70 72 74 76 186 80 82 84 86 88 125 92 94 96 98 100 174 104 106 108 110 112 137 116 118 120 122 124 128 130 132 134 136 140 142 144 146 148 173 152 154 156 158 160 185 164 166 168 170 172 176 178 180 182 184 188 190 192,25 3 5 7 9 11 120 37 15 17 19 21 23 96 27 29 31 33 35 144 39 41 43 45 47 132 73 51 53 55 57 59 168 97 63 65 67 69 71 156 75 77 79 81 83 192 121 87 89 91 93 95 99 101 103 105 107 180 133 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 181 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191:4 3 3 4 4 4 3 3 4 3 4 3 3 3 4 4 3 3 4 4 3 3 3 3 3 4 4 3,5 7 5 7 7 7 5 7 5 7 7 5 7 5 5 5> {(0, 179): 't1*tau3*t2^-1', (1, 124): 'tau2*t3', (0, 117): 't2^-1', (0, 190): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 129): 'tau2', (2, 144): 't3^-1*tau2^-1', (0, 140): 'tau3^-1*t2', (0, 187): 't1^-1*tau3^-1*t2', (0, 166): 'tau1', (0, 180): 't1^-1', (0, 118): 't2^-1', (0, 130): 'tau2', (0, 188): 't1^-1*tau3^-1*t2', (1, 172): 'tau2*t3', (1, 112): 't2^-1*tau3', (1, 101): 't1^-1', (2, 108): 't2^-1*tau3', (0, 128): 'tau2*t3', (0, 169): 't1', (0, 107): 'tau3*t2^-1', (0, 45): 't1', (2, 36): 't1', (1, 29): 't1^-1', (0, 133): 't1', (0, 59): 't3*tau2', (0, 176): 'tau2*t3', (1, 184): 't1^-1*tau3^-1*t2', (2, 143): 't1', (0, 191): 'tau2^-1*t3^-1', (1, 16): 't1^-1', (0, 170): 't1', (0, 141): 'tau3^-1', (0, 35): 't1^-1', (0, 46): 't1', (0, 134): 't1', (2, 120): 'tau2*t3', (0, 43): 't1', (2, 107): 't1^-1', (0, 57): 't3', (0, 175): 'tau2*t3', (0, 142): 'tau3^-1', (0, 36): 't1', (0, 189): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 180): 't1^-1*tau3^-1*t2', (0, 127): 'tau2*t3', (0, 139): 'tau3^-1*t2', (0, 44): 't1', (0, 165): 'tau1', (0, 58): 't3', }