U-tiling: UQC2678
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2127 |
*22222 |
(2,6,5) |
{5,6} |
{4.4.3.4.4}{3.4.4.3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc5621
|
|
Fmmm |
69 |
orthorhombic |
{5,5} |
10 |
(2,6) |
G
|
False
|
|
sqc11351
|
|
Fddd |
70 |
orthorhombic |
{6,5,5} |
20 |
(3,7) |
D
|
False
|
|
sqc5690
|
|
Cmma |
67 |
orthorhombic |
{5,6} |
10 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.4.3.4.4}{3.4.4.3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<19.1:208:118 4 5 123 124 112 113 62 63 25 26 144 17 18 149 150 138 139 75 76 170 30 31 175 176 164 165 88 89 51 52 196 43 44 201 202 190 191 101 102 131 56 57 136 137 151 152 77 78 105 69 70 110 111 125 126 183 82 83 188 189 203 204 103 104 157 95 96 162 163 177 178 108 109 153 154 142 143 121 122 140 141 155 156 134 135 147 148 160 161 205 206 194 195 173 174 192 193 207 208 186 187 199 200,2 16 6 13 8 10 12 15 19 26 21 23 25 28 42 32 39 34 36 38 41 45 52 47 49 51 54 68 58 65 60 62 64 67 71 78 73 75 77 80 94 84 91 86 88 90 93 97 104 99 101 103 106 133 110 117 112 114 116 119 146 123 130 125 127 129 132 136 143 138 140 142 145 149 156 151 153 155 158 185 162 169 164 166 168 171 198 175 182 177 179 181 184 188 195 190 192 194 197 201 208 203 205 207,27 3 5 7 9 11 13 40 16 18 20 22 24 26 29 31 33 35 37 39 42 44 46 48 50 52 79 55 57 59 61 63 65 92 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 157 107 109 111 113 115 117 170 120 122 124 126 128 130 183 133 135 137 139 141 143 196 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 4 3 4 3 4 3 3 4 3,6 5 5 5 5 6 5 5 5 5 6 5 6 5 5 5 5 5 5 5> {(0, 179): 'tau2^-1*t1*tau3', (0, 190): 'tau3^-1', (0, 202): 'tau3', (0, 5): 't3', (0, 154): 'tau1', (0, 48): 't1^-1', (0, 166): 'tau2*t1^-1*tau3^-1', (0, 104): 't3', (0, 180): 't3*tau1^-1*t2^-1', (0, 163): 'tau2', (0, 130): 't2', (0, 177): 'tau2^-1', (0, 6): 't3', (0, 109): 't3', (1, 106): 'tau1', (0, 164): 'tau2', (0, 135): 't2', (0, 149): 't2^-1', (1, 197): 't2*tau1*t3^-1', (0, 143): 't2^-1', (0, 110): 't3', (2, 130): 't2', (0, 136): 't2', (0, 176): 'tau2^-1', (1, 184): 't2^-1*tau1^-1*t3', (2, 143): 't2^-1', (0, 191): 'tau3^-1*t1^-1*tau2', (0, 203): 'tau3', (0, 141): 'tau1^-1', (0, 35): 't1^-1', (0, 155): 'tau1', (0, 49): 't1^-1', (0, 167): 't3^-1*tau1*t2', (2, 117): 't3^-1', (0, 181): 't3*tau1^-1*t2^-1', (0, 148): 't2^-1', (0, 142): 'tau1^-1', (0, 36): 't1^-1', (0, 189): 'tau3^-1', (1, 119): 'tau1^-1', (0, 168): 't3^-1*tau1*t2', (0, 0): 't3', (0, 165): 'tau2*t1^-1*tau3^-1', (2, 104): 't3', }