U-tiling: UQC2682
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2127 |
*22222 |
(2,6,5) |
{5,6} |
{4.4.3.4.4}{3.4.4.3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6039
|
|
Fmmm |
69 |
orthorhombic |
{6,5} |
10 |
(2,6) |
G
|
False
|
|
sqc11452
|
|
Fddd |
70 |
orthorhombic |
{6,5,5} |
20 |
(3,7) |
D
|
False
|
|
sqc5967
|
|
Cmma |
67 |
orthorhombic |
{5,6} |
10 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.4.3.4.4}{3.4.4.3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<19.3:208:53 4 5 58 59 21 22 36 37 129 130 66 17 18 71 72 49 50 155 156 79 30 31 84 85 47 48 181 182 92 43 44 97 98 207 208 56 57 73 74 88 89 142 143 69 70 101 102 116 117 82 83 99 100 194 195 95 96 168 169 144 108 109 149 150 138 139 166 167 131 121 122 136 137 151 152 179 180 134 135 192 193 147 148 205 206 196 160 161 201 202 190 191 183 173 174 188 189 203 204 186 187 199 200,2 120 6 13 8 10 12 15 146 19 26 21 23 25 28 172 32 39 34 36 38 41 198 45 52 47 49 51 54 133 58 65 60 62 64 67 107 71 78 73 75 77 80 185 84 91 86 88 90 93 159 97 104 99 101 103 106 110 117 112 114 116 119 123 130 125 127 129 132 136 143 138 140 142 145 149 156 151 153 155 158 162 169 164 166 168 171 175 182 177 179 181 184 188 195 190 192 194 197 201 208 203 205 207,105 3 5 7 9 11 13 131 16 18 20 22 24 26 157 29 31 33 35 37 39 183 42 44 46 48 50 52 144 55 57 59 61 63 65 118 68 70 72 74 76 78 196 81 83 85 87 89 91 170 94 96 98 100 102 104 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 3 4 4 4 4 3 4 4 3 4 4 3 3 4 4 3 4 3 3 4 4 4 4 4 4 4 4,6 5 6 5 6 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5> {(0, 179): 't3', (0, 190): 't2^-1*tau1^-1*t3', (0, 129): 't3^-1', (0, 140): 't2', (0, 187): 'tau3^-1*t1^-1*tau2', (0, 154): 't2^-1', (0, 166): 't3^-1', (0, 137): 'tau1^-1', (0, 151): 'tau1', (0, 177): 't3*tau1^-1*t2^-1', (0, 39): 't1^-1', (2, 91): 'tau2', (1, 67): 't3^-1', (0, 115): 't3', (0, 188): 'tau3^-1*t1^-1*tau2', (2, 78): 'tau3^-1', (0, 138): 'tau1^-1', (0, 32): 't1^-1', (0, 152): 't2^-1', (0, 178): 't3', (0, 116): 't3', (0, 161): 'tau2*t1^-1*tau3^-1', (0, 128): 't3^-1', (1, 15): 't2', (0, 45): 't1^-1', (0, 150): 'tau1', (0, 195): 'tau3*t1*tau2^-1', (2, 39): 'tau3', (0, 162): 'tau2*t1^-1*tau3^-1', (1, 54): 't2^-1', (0, 26): 't1^-1', (0, 176): 't3*tau1^-1*t2^-1', (0, 191): 't2^-1', (0, 141): 't2', (0, 155): 't2^-1', (0, 31): 't1^-1', (0, 142): 't2', (0, 189): 't2^-1*tau1^-1*t3', (2, 26): 'tau2^-1', (1, 119): 't3^-1', (0, 182): 'tau3^-1*t1^-1*tau2', (0, 44): 't1^-1', (0, 153): 't2^-1', (0, 165): 't3^-1', }