U-tiling: UQC269
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc10 |
*266 |
(1,1,1) |
{6} |
{6.6.6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc13
|
sqp
|
I4/mmm |
139 |
tetragonal |
{5} |
2 |
(1,2) |
G
|
False
|
|
sqc34
|
sxa
|
Cmma |
67 |
orthorhombic |
{6} |
2 |
(1,3) |
D
|
False
|
|
sqc26
|
msw
|
P42/nnm |
134 |
tetragonal |
{6} |
2 |
(1,2) |
Topological data
Vertex degrees | {6,6} |
2D vertex symbol | {6.6.6.6.6.6}{6.6.6.6.6.6} |
Dual tiling | (self dual) |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.1:48:7 3 5 12 9 11 19 15 17 24 21 23 31 27 29 36 33 35 43 39 41 48 45 47,2 27 28 6 8 33 34 12 14 39 40 18 20 45 46 24 26 30 32 36 38 42 44 48,13 4 5 18 19 10 11 24 16 17 22 23 37 28 29 42 43 34 35 48 40 41 46 47:6 6 6 6,6 6 6 6> {(2, 29): 't2^-1*tau1^-1', (0, 24): 't2^-1*tau3', (2, 23): 'tau2^-1*t1', (1, 26): 't2^-1', (0, 17): 't3*tau2', (2, 17): 't3', (0, 42): 't1^-1*tau3^-1*t2', (0, 11): 't1^-1', (0, 41): 't3*tau2', (1, 44): 't1^-1*tau3^-1*t2*tau1*t3^-1', (2, 42): 't1^-1', (1, 33): 't1', (1, 32): 'tau3^-1', (1, 38): 'tau1*t3^-1', (2, 35): 't2^-1*tau1^-1*t3*tau2'}