U-tiling: UQC2747
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2146 |
*22222 |
(2,6,5) |
{4,10} |
{4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10680
|
|
P4/mmm |
123 |
tetragonal |
{7,4} |
20 |
(2,6) |
G
|
False
|
|
sqc11285
|
|
I4122 |
98 |
tetragonal |
{10,4,4} |
20 |
(3,7) |
D
|
False
|
|
sqc5626
|
|
P4222 |
93 |
tetragonal |
{10,4} |
10 |
(2,6) |
Topological data
Vertex degrees | {10,4} |
2D vertex symbol | {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<22.2:208:118 28 29 6 7 34 35 23 24 38 39 92 41 42 19 20 47 48 51 52 144 32 33 49 50 131 45 46 170 80 81 58 59 86 87 101 102 90 91 157 106 107 71 72 112 113 127 128 116 117 196 84 85 140 141 132 133 97 98 138 139 142 143 183 110 111 153 154 145 146 123 124 151 152 155 156 136 137 149 150 184 185 162 163 190 191 179 180 194 195 197 198 175 176 203 204 207 208 188 189 205 206 201 202,2 4 31 8 13 10 12 15 17 44 21 26 23 25 28 30 34 39 36 38 41 43 47 52 49 51 54 56 83 60 65 62 64 67 69 109 73 78 75 77 80 82 86 91 88 90 93 95 135 99 104 101 103 106 108 112 117 114 116 119 121 148 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 187 164 169 166 168 171 173 200 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,53 3 5 7 9 11 13 66 16 18 20 22 24 26 79 29 31 33 35 37 39 105 42 44 46 48 50 52 55 57 59 61 63 65 68 70 72 74 76 78 81 83 85 87 89 91 157 94 96 98 100 102 104 107 109 111 113 115 117 170 120 122 124 126 128 130 183 133 135 137 139 141 143 196 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 3 4 4 4 4 3 4 4 3 4 4 4 4 3 4 4 4 3 4 3 4 3 4 4 4 3,10 4 10 4 4 4 4 4 4 10 4 4 10 4 4 4 4 4 4 4> {(0, 179): 'tau1', (0, 190): 't1*tau3*t2^-1', (0, 140): 'tau2', (0, 34): 't1^-1', (0, 111): 'tau3*t2^-1', (0, 154): 'tau3^-1*t2', (0, 48): 't1', (0, 180): 't2^-1*tau3*t1', (1, 199): 't1^-1*tau3^-1*t2', (0, 27): 't1^-1', (0, 177): 't3*tau2', (0, 53): 't3*tau2', (0, 126): 't2^-1', (0, 171): 't3*tau2', (0, 152): 'tau3^-1', (0, 61): 't3', (0, 28): 't1^-1', (0, 178): 'tau1', (1, 186): 'tau2*t3', (2, 39): 't1', (0, 205): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 54): 't3*tau2', (0, 143): 't1', (1, 43): 't1', (0, 51): 't1', (0, 62): 't3', (0, 183): 't1*tau3*t2^-1', (0, 59): 't3*tau2', (0, 60): 't3*tau2', (0, 176): 't3*tau2', (2, 143): 't1', (0, 191): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 170): 't3*tau2', (0, 141): 'tau2*t3', (0, 184): 't1*tau3*t2^-1', (1, 95): 't3^-1*tau2^-1', (0, 155): 'tau3^-1*t2', (0, 49): 't1', (0, 167): 't3^-1*tau2^-1', (1, 121): 't2^-1*tau3', (0, 105): 'tau3*t2^-1', (0, 181): 't2^-1*tau3*t1', (0, 142): 'tau2*t3', (0, 112): 'tau3*t2^-1', (0, 189): 't1*tau3*t2^-1', (0, 50): 't1', (0, 127): 't2^-1', (0, 168): 't3^-1*tau2^-1', (0, 139): 'tau2', (0, 33): 't1^-1', (0, 106): 'tau3*t2^-1', (0, 182): 't1', (0, 153): 'tau3^-1', }