h-net: hqc2146


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,6,5)
Vertex degrees{4,10}
2D vertex symbol {4.4.3.4}{3.4.4.4.4.3.4.4.4.4}
Delaney-Dress Symbol <2146.2:13:1 2 3 4 5 7 9 10 11 12 13,2 4 6 7 10 11 13,3 10 5 8 9 12 13:4 4 3 4 4,4 10>
Dual net hqc2238

Derived s-nets

s-nets with faithful topology

19 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5714 Fmmm 69 orthorhombic {4,10} 10 (2,6)
Full image sqc11285 I4122 98 tetragonal {10,4,4} 20 (3,7)
Full image sqc11286 I4122 98 tetragonal {10,4,4} 20 (3,7)
Full image sqc11288 I4122 98 tetragonal {10,4,4} 20 (3,7)
Full image sqc11307 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11308 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11309 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11310 I4122 98 tetragonal {10,4,4} 20 (3,7)
Full image sqc11311 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11324 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11325 I4122 98 tetragonal {10,4,4} 20 (3,7)
Full image sqc980 Pmmm 47 orthorhombic {4,10} 5 (2,6)
Full image sqc5624 P42/mmc 131 tetragonal {4,10} 10 (2,6)
Full image sqc5626 P4222 93 tetragonal {10,4} 10 (2,6)
Full image sqc5640 P4222 93 tetragonal {4,10} 10 (2,6)
Full image sqc5644 P4222 93 tetragonal {4,10} 10 (2,6)
Full image sqc5715 Cmma 67 orthorhombic {4,10} 10 (2,6)
Full image sqc5721 P4222 93 tetragonal {4,10} 10 (2,6)
Full image sqc5750 Cmma 67 orthorhombic {4,10} 10 (2,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2746 *22222a (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} No s‑net Snet sqc11286 Snet sqc5624
Tiling details UQC2747 *22222a (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} Snet sqc10680 Snet sqc11285 Snet sqc5626
Tiling details UQC2748 *22222b (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} Snet sqc752 Snet sqc11324 Snet sqc5750
Tiling details UQC2749 *22222b (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} No s‑net Snet sqc11307 Snet sqc980
Tiling details UQC2750 *22222b (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} Snet sqc5609 Snet sqc11308 Snet sqc752
Tiling details UQC2751 *22222b (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} Snet sqc752 Snet sqc11309 Snet sqc5715
Tiling details UQC2752 *22222b (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} Snet sqc5714 Snet sqc11311 Snet sqc752
Tiling details UQC2753 *22222a (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} Snet sqc10764 Snet sqc11325 Snet sqc5721
Tiling details UQC2754 *22222a (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} Snet sqc11268 Snet sqc11310 Snet sqc5640
Tiling details UQC2755 *22222a (2,6,5) {10,4} {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} No s‑net Snet sqc11288 Snet sqc5644

Symmetry-lowered hyperbolic tilings