U-tiling: UQC2762
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2149 |
*22222 |
(2,6,5) |
{4,5} |
{4.8.3.4}{3.8.4.4.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11534
|
|
P4/mmm |
123 |
tetragonal |
{5,4} |
24 |
(2,6) |
G
|
False
|
|
sqc11535
|
|
I4122 |
98 |
tetragonal |
{5,4,4} |
24 |
(3,7) |
D
|
False
|
|
sqc6032
|
|
P4222 |
93 |
tetragonal |
{5,4} |
12 |
(2,6) |
Topological data
Vertex degrees | {5,4} |
2D vertex symbol | {4.8.3.4}{3.8.4.4.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<21.5:208:27 54 55 6 7 125 126 36 37 25 26 40 67 68 19 20 99 100 49 50 80 81 32 33 151 152 51 52 106 107 45 46 138 139 79 58 59 177 178 88 89 103 104 105 71 72 164 165 114 115 129 130 84 85 203 204 142 143 131 158 159 97 98 140 141 110 111 190 191 155 156 144 171 172 123 124 153 154 184 185 136 137 197 198 149 150 183 162 163 192 193 181 182 196 175 176 205 206 188 189 207 208 201 202,2 4 18 8 13 10 12 15 17 21 26 23 25 28 30 44 34 39 36 38 41 43 47 52 49 51 54 56 96 60 65 62 64 67 69 122 73 78 75 77 80 82 135 86 91 88 90 93 95 99 104 101 103 106 108 148 112 117 114 116 119 121 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 174 164 169 166 168 171 173 177 182 179 181 184 186 200 190 195 192 194 197 199 203 208 205 207,14 3 5 7 9 11 13 16 18 20 22 24 26 40 29 31 33 35 37 39 42 44 46 48 50 52 92 55 57 59 61 63 65 118 68 70 72 74 76 78 131 81 83 85 87 89 91 94 96 98 100 102 104 144 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 170 159 161 163 165 167 169 172 174 176 178 180 182 196 185 187 189 191 193 195 198 200 202 204 206 208:4 8 3 4 4 4 8 4 8 3 8 3 4 4 3 4 4 3 4 3 4 3 4 3,5 4 4 5 4 4 5 4 5 4 5 4 4 5 4 4 4 4 5 4 4 5 4 4> {(0, 103): 't3^-1', (0, 179): 't3*tau2', (0, 41): 't1', (0, 190): 't1', (0, 129): 't2^-1', (0, 34): 't1^-1', (0, 154): 'tau3^-1', (2, 182): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (1, 56): 't3', (0, 166): 't2*tau3^-1*t1^-1', (0, 63): 't3', (0, 180): 'tau1', (0, 130): 'tau2*t3', (0, 207): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 39): 't1', (0, 144): 't1', (2, 78): 'tau2^-1', (1, 199): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 147): 'tau3^-1', (0, 76): 't2', (2, 169): 'tau1', (0, 61): 't3*tau2', (2, 52): 't3', (0, 40): 't1', (0, 178): 't3*tau2', (2, 39): 't1', (0, 143): 'tau3^-1*t2', (0, 113): 'tau3*t2^-1', (0, 51): 't1', (0, 169): 't2^-1*tau3*t1', (0, 62): 't3*tau2', (0, 150): 't1', (0, 206): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 143): 'tau3^-1', (0, 114): 'tau3*t2^-1', (0, 191): 't1*tau3*t2^-1', (1, 173): 'tau1', (1, 82): 'tau2^-1', (0, 141): 'tau2', (0, 35): 't1^-1', (0, 155): 'tau3^-1', (2, 117): 't2^-1', (1, 121): 't2^-1', (0, 181): 'tau1', (0, 142): 'tau2', (0, 36): 't1^-1', (0, 145): 't1', (0, 189): 't1', (0, 50): 't1', (0, 182): 'tau2*t3', (1, 30): 't1^-1', }