Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,6,5) |
Vertex degrees | {4,5} |
2D vertex symbol | {4.8.3.4}{3.8.4.4.8} |
Delaney-Dress Symbol | <2149.2:13:1 2 3 4 5 7 9 10 11 12 13,2 4 6 7 10 11 13,3 10 5 8 9 12 13:4 4 3 8 4,4 5> |
Dual net | hqc2231 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc1075 | Pmmm | 47 | orthorhombic | {4,5} | 6 | (2,6) | ||
sqc5852 | Fmmm | 69 | orthorhombic | {5,4} | 12 | (2,6) | ||
sqc11534 | P4/mmm | 123 | tetragonal | {5,4} | 24 | (2,6) | ||
sqc11303 | I4122 | 98 | tetragonal | {5,4,4} | 24 | (3,7) | ||
sqc11367 | I4122 | 98 | tetragonal | {5,4,4} | 24 | (3,7) | ||
sqc11372 | Fddd | 70 | orthorhombic | {5,4,4} | 24 | (3,7) | ||
sqc11373 | Fddd | 70 | orthorhombic | {5,4,4} | 24 | (3,7) | ||
sqc11381 | I4122 | 98 | tetragonal | {5,4,4} | 24 | (3,7) | ||
sqc11382 | Fddd | 70 | orthorhombic | {5,4,4} | 24 | (3,7) | ||
sqc11384 | Fddd | 70 | orthorhombic | {5,4,4} | 24 | (3,7) | ||
sqc11385 | Fddd | 70 | orthorhombic | {5,4,4} | 24 | (3,7) | ||
sqc11528 | I4122 | 98 | tetragonal | {5,4,4} | 24 | (3,7) | ||
sqc11535 | I4122 | 98 | tetragonal | {5,4,4} | 24 | (3,7) | ||
sqc1073 | Pmmm | 47 | orthorhombic | {4,5} | 6 | (2,6) | ||
sqc1104 | Pmmm | 47 | orthorhombic | {5,4} | 6 | (2,6) | ||
sqc5695 | P4222 | 93 | tetragonal | {4,5} | 12 | (2,6) | ||
sqc5772 | P4222 | 93 | tetragonal | {4,5} | 12 | (2,6) | ||
sqc5774 | P4222 | 93 | tetragonal | {4,5} | 12 | (2,6) | ||
sqc5829 | Cmma | 67 | orthorhombic | {4,5} | 12 | (2,6) | ||
sqc5853 | Cmma | 67 | orthorhombic | {5,4} | 12 | (2,6) | ||
sqc6031 | P4222 | 93 | tetragonal | {4,5} | 12 | (2,6) | ||
sqc6032 | P4222 | 93 | tetragonal | {5,4} | 12 | (2,6) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC2759 | *22222a | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | No s‑net | sqc11303 | sqc5695 | |
UQC2760 | *22222b | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | sqc5503 | sqc11382 | sqc1104 | |
UQC2761 | *22222a | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | No s‑net | sqc11528 | sqc6031 | |
UQC2762 | *22222a | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | sqc11534 | sqc11535 | sqc6032 | |
UQC2763 | *22222b | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | No s‑net | sqc11372 | sqc1073 | |
UQC2764 | *22222b | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | sqc1075 | sqc11384 | sqc5853 | |
UQC2765 | *22222b | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | sqc1075 | sqc11373 | sqc5829 | |
UQC2766 | *22222b | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | sqc5852 | sqc11385 | sqc1075 | |
UQC2767 | *22222a | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | sqc11140 | sqc11381 | sqc5774 | |
UQC2768 | *22222a | (2,6,5) | {5,4} | {4.8.3.4}{3.8.4.4.8} | sqc5494 | sqc11367 | sqc5772 |