h-net: hqc2149


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,6,5)
Vertex degrees{4,5}
2D vertex symbol {4.8.3.4}{3.8.4.4.8}
Delaney-Dress Symbol <2149.2:13:1 2 3 4 5 7 9 10 11 12 13,2 4 6 7 10 11 13,3 10 5 8 9 12 13:4 4 3 8 4,4 5>
Dual net hqc2231

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1075 Pmmm 47 orthorhombic {4,5} 6 (2,6)
Full image sqc5852 Fmmm 69 orthorhombic {5,4} 12 (2,6)
Full image sqc11534 P4/mmm 123 tetragonal {5,4} 24 (2,6)
Full image sqc11303 I4122 98 tetragonal {5,4,4} 24 (3,7)
Full image sqc11367 I4122 98 tetragonal {5,4,4} 24 (3,7)
Full image sqc11372 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11373 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11381 I4122 98 tetragonal {5,4,4} 24 (3,7)
Full image sqc11382 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11384 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11385 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11528 I4122 98 tetragonal {5,4,4} 24 (3,7)
Full image sqc11535 I4122 98 tetragonal {5,4,4} 24 (3,7)
Full image sqc1073 Pmmm 47 orthorhombic {4,5} 6 (2,6)
Full image sqc1104 Pmmm 47 orthorhombic {5,4} 6 (2,6)
Full image sqc5695 P4222 93 tetragonal {4,5} 12 (2,6)
Full image sqc5772 P4222 93 tetragonal {4,5} 12 (2,6)
Full image sqc5774 P4222 93 tetragonal {4,5} 12 (2,6)
Full image sqc5829 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5853 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc6031 P4222 93 tetragonal {4,5} 12 (2,6)
Full image sqc6032 P4222 93 tetragonal {5,4} 12 (2,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2759 *22222a (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} No s‑net Snet sqc11303 Snet sqc5695
Tiling details UQC2760 *22222b (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} Snet sqc5503 Snet sqc11382 Snet sqc1104
Tiling details UQC2761 *22222a (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} No s‑net Snet sqc11528 Snet sqc6031
Tiling details UQC2762 *22222a (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} Snet sqc11534 Snet sqc11535 Snet sqc6032
Tiling details UQC2763 *22222b (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} No s‑net Snet sqc11372 Snet sqc1073
Tiling details UQC2764 *22222b (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} Snet sqc1075 Snet sqc11384 Snet sqc5853
Tiling details UQC2765 *22222b (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} Snet sqc1075 Snet sqc11373 Snet sqc5829
Tiling details UQC2766 *22222b (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} Snet sqc5852 Snet sqc11385 Snet sqc1075
Tiling details UQC2767 *22222a (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} Snet sqc11140 Snet sqc11381 Snet sqc5774
Tiling details UQC2768 *22222a (2,6,5) {5,4} {4.8.3.4}{3.8.4.4.8} Snet sqc5494 Snet sqc11367 Snet sqc5772

Symmetry-lowered hyperbolic tilings