U-tiling: UQC2910
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc338 |
*2224 |
(2,4,3) |
{5,4} |
{4.4.4.4.4}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6827
|
|
Fmmm |
69 |
orthorhombic |
{5,4} |
12 |
(2,7) |
G
|
False
|
|
sqc11951
|
|
Fddd |
70 |
orthorhombic |
{4,5,5} |
24 |
(3,8) |
D
|
False
|
|
sqc6828
|
|
Cmma |
67 |
orthorhombic |
{5,4} |
12 |
(2,7) |
Topological data
Vertex degrees | {4,5} |
2D vertex symbol | {4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<29.2:224:113 4 5 118 119 64 65 24 25 40 41 42 141 18 19 146 147 78 79 54 55 56 169 32 33 174 175 92 93 52 53 197 46 47 202 203 106 107 155 60 61 160 161 80 81 96 97 98 127 74 75 132 133 110 111 112 211 88 89 216 217 108 109 183 102 103 188 189 116 117 162 163 150 151 180 181 182 130 131 148 149 164 165 194 195 196 144 145 208 209 210 158 159 222 223 224 172 173 218 219 206 207 186 187 204 205 220 221 200 201 214 215,2 14 6 13 8 10 12 16 28 20 27 22 24 26 30 42 34 41 36 38 40 44 56 48 55 50 52 54 58 70 62 69 64 66 68 72 84 76 83 78 80 82 86 98 90 97 92 94 96 100 112 104 111 106 108 110 114 126 118 125 120 122 124 128 140 132 139 134 136 138 142 154 146 153 148 150 152 156 168 160 167 162 164 166 170 182 174 181 176 178 180 184 196 188 195 190 192 194 198 210 202 209 204 206 208 212 224 216 223 218 220 222,127 3 5 7 9 11 13 140 155 17 19 21 23 25 27 168 183 31 33 35 37 39 41 196 211 45 47 49 51 53 55 224 141 59 61 63 65 67 69 154 113 73 75 77 79 81 83 126 197 87 89 91 93 95 97 210 169 101 103 105 107 109 111 182 115 117 119 121 123 125 129 131 133 135 137 139 143 145 147 149 151 153 157 159 161 163 165 167 171 173 175 177 179 181 185 187 189 191 193 195 199 201 203 205 207 209 213 215 217 219 221 223:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5> {(0, 179): 't3^-1', (2, 56): 't2^-1', (0, 202): 'tau3^-1', (0, 173): 'tau2', (0, 216): 'tau3', (0, 187): 'tau2^-1', (0, 166): 't2^-1', (0, 137): 't3^-1', (0, 180): 't3^-1', (0, 151): 't2', (0, 163): 'tau1', (0, 174): 'tau2', (0, 177): 't3^-1*tau1*t2', (0, 188): 'tau2^-1', (0, 138): 't3^-1', (0, 152): 't2', (0, 164): 'tau1', (0, 178): 't3^-1*tau1*t2', (0, 149): 'tau1^-1', (2, 27): 't2', (2, 14): 't2', (0, 150): 'tau1^-1', (0, 195): 't3', (0, 176): 'tau2*t1^-1*tau3^-1', (0, 220): 't2*tau1*t3^-1', (0, 191): 't3*tau1^-1*t2^-1', (2, 112): 't3', (0, 35): 't1^-1', (0, 196): 'tau3^-1', (0, 49): 't1^-1', (0, 167): 't2^-1', (2, 0): 't3', (0, 210): 'tau3', (2, 153): 't2', (0, 181): 't3^-1', (0, 204): 'tau3^-1*t1^-1*tau2', (0, 175): 'tau2*t1^-1*tau3^-1', (2, 125): 't3', (0, 36): 't1^-1', (0, 189): 'tau2^-1*t1*tau3', (0, 201): 'tau3^-1', (0, 50): 't1^-1', (0, 168): 'tau2', (2, 13): 't3', (0, 215): 'tau3', (0, 182): 'tau2^-1', (0, 153): 't2', (0, 165): 't2^-1', }