U-tiling: UQC2953
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2302 |
*222222 |
(2,7,5) |
{16,3} |
{4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc6235
|
|
I212121 |
24 |
orthorhombic |
{16,3,3} |
10 |
(3,8) |
D
|
False
|
|
sqc1122
|
|
Pmmm |
47 |
orthorhombic |
{3,16} |
5 |
(2,7) |
Topological data
Vertex degrees | {16,3} |
2D vertex symbol | {4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4}{4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<21.1:112:29 58 59 18 19 8 9 24 25 40 41 42 43 72 73 22 23 54 55 56 86 87 46 47 36 37 52 53 100 101 50 51 85 74 75 64 65 80 81 96 97 98 99 78 79 110 111 112 102 103 92 93 108 109 106 107,2 4 6 14 10 13 12 16 18 20 28 24 27 26 30 32 34 42 38 41 40 44 46 48 56 52 55 54 58 60 62 70 66 69 68 72 74 76 84 80 83 82 86 88 90 98 94 97 96 100 102 104 112 108 111 110,15 3 5 7 9 11 13 70 17 19 21 23 25 27 84 43 31 33 35 37 39 41 98 45 47 49 51 53 55 112 71 59 61 63 65 67 69 73 75 77 79 81 83 99 87 89 91 93 95 97 101 103 105 107 109 111:4 4 4 4 4 4 4 4 4 4 4 4 4 4,16 3 3 16 3 3 3 3 3 3> {(0, 39): 't3', (0, 16): 't1^-1', (2, 27): 'tau3', (0, 51): 'tau2^-1*t3^-1', (0, 41): 't3', (0, 18): 't1^-1', (0, 53): 'tau2^-1*t1', (2, 56): 't2^-1*tau3', (0, 107): 'tau2^-1*t3^-1', (0, 55): 'tau2^-1*t1', (0, 111): 'tau2^-1*t3^-1*tau1*t2', (0, 45): 'tau2^-1*t3^-1', (0, 67): 't2^-1*tau1^-1', (0, 98): 't1^-1', (2, 41): 't3*tau1^-1', (0, 24): 't1^-1', (2, 98): 't1^-1*tau3^-1*t2', (0, 17): 't1^-1', (0, 102): 'tau2^-1*t3^-1', (0, 96): 'tau1*t2', (0, 40): 't3', (0, 82): 't2^-1*tau1^-1*t3*tau2', (2, 13): 't2', (0, 52): 'tau2^-1*t3^-1', (0, 97): 'tau1*t2', (0, 23): 't1^-1', (0, 54): 'tau2^-1*t1', (0, 109): 'tau2^-1*t3^-1*tau1*t2', (0, 108): 'tau2^-1*t3^-1', (0, 15): 't1^-1', (0, 101): 'tau2^-1*t3^-1', (0, 46): 'tau2^-1*t3^-1', (2, 55): 't3*tau1^-1*t2^-1*tau3*t1', }