U-tiling: UQC331
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc469 |
*22222 |
(2,4,2) |
{8,6} |
{3.4.4.3.3.4.4.3}{3.4.4.3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc903
|
|
P4/mmm |
123 |
tetragonal |
{6,6} |
4 |
(2,4) |
G
|
False
|
|
sqc6316
|
|
I4122 |
98 |
tetragonal |
{8,6} |
8 |
(2,5) |
D
|
False
|
|
sqc1139
|
|
P4222 |
93 |
tetragonal |
{8,6} |
4 |
(2,4) |
Topological data
Vertex degrees | {8,6} |
2D vertex symbol | {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<11.1:112:15 3 5 20 21 22 10 12 27 28 17 19 24 26 43 31 33 48 49 57 38 40 62 63 45 47 71 52 54 76 77 59 61 78 66 68 83 84 73 75 80 82 99 87 89 104 105 106 94 96 111 112 101 103 108 110,2 17 6 7 9 24 13 14 16 20 21 23 27 28 30 45 34 35 37 59 41 42 44 48 49 51 73 55 56 58 62 63 65 80 69 70 72 76 77 79 83 84 86 101 90 91 93 108 97 98 100 104 105 107 111 112,29 4 5 69 14 36 11 12 55 43 18 19 83 28 57 25 26 76 32 33 97 56 39 40 90 70 46 47 111 77 85 53 54 60 61 104 84 92 67 68 99 74 75 106 81 82 88 89 98 95 96 102 103 112 109 110:3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4,8 6 8 8 8 6 6 6> {(2, 61): 't1^-1', (2, 62): 'tau3', (0, 62): 'tau3*t2^-1', (0, 63): 't2^-1*tau3', (0, 61): 'tau3*t2^-1', (0, 48): 'tau2^-1*t3^-1', (0, 49): 't3^-1*tau2^-1', (2, 48): 'tau2^-1', (2, 41): 't2', (2, 56): 't1^-1', (0, 33): 't3*tau2', (1, 100): 'tau2*t3', (2, 34): 't3', (1, 93): 't2^-1*tau3*t1', (2, 27): 't1', (0, 20): 't1^-1', (2, 19): 't1^-1', (1, 72): 'tau2*t3', (1, 79): 'tau3^-1*t2', (0, 7): 't1^-1', (0, 5): 't1', (0, 104): 't1*tau3*t2^-1', (2, 111): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 110): 'tau2^-1*t3^-1', (0, 111): 'tau2^-1*t3^-1', (2, 97): 'tau1', (0, 103): 't1*tau3*t2^-1', (0, 91): 't2^-1*tau3*t1', (0, 84): 't3^-1*tau2^-1', (1, 9): 't1^-1', (2, 105): 't1^-1'}