h-net: hqc469


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,2)
Vertex degrees{8,6}
2D vertex symbol {3.4.4.3.3.4.4.3}{3.4.4.3.4.4}
Delaney-Dress Symbol <469.2:7:1 3 5 6 7,2 3 6 7,1 4 5 6 7:3 4,8 6>
Dual net hqc480

Derived s-nets

s-nets with faithful topology

20 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1290 Fmmm 69 orthorhombic {6,8} 4 (2,4)
Full image sqc6277 I4122 98 tetragonal {8,6} 8 (2,5)
Full image sqc6291 I4122 98 tetragonal {8,6} 8 (2,5)
Full image sqc6316 I4122 98 tetragonal {8,6} 8 (2,5)
Full image sqc6348 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6407 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6508 I4122 98 tetragonal {8,6} 8 (2,5)
Full image sqc6517 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6518 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6541 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6680 I4122 98 tetragonal {8,6} 8 (2,5)
Full image sqc46 seb Pmmm 47 orthorhombic {6,8} 2 (2,4)
Full image sqc1139 P4222 93 tetragonal {8,6} 4 (2,4)
Full image sqc1167 P42/mmc 131 tetragonal {6,8} 4 (2,4)
Full image sqc1194 Cmma 67 orthorhombic {6,8} 4 (2,4)
Full image sqc1196 P4222 93 tetragonal {6,8} 4 (2,4)
Full image sqc1197 Cmma 67 orthorhombic {8,6} 4 (2,4)
Full image sqc1204 P4222 93 tetragonal {6,8} 4 (2,4)
Full image sqc1206 P4222 93 tetragonal {6,8} 4 (2,4)
Full image sqc1313 Cmma 67 orthorhombic {6,8} 4 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC331 *22222a (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc903 Snet sqc6316 Snet sqc1139
Tiling details UQC332 *22222a (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc5669 Snet sqc6277 Snet sqc1206
Tiling details UQC333 *22222a (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc5682 Snet sqc6291 Snet sqc1204
Tiling details UQC334 *22222a (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc5791 Snet sqc6508 Snet sqc1196
Tiling details UQC335 *22222b (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc1092 Snet sqc6518 Snet sqc46
Tiling details UQC336 *22222a (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc5792 Snet sqc6680 Snet sqc1167
Tiling details UQC337 *22222b (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc46 Snet sqc6407 Snet sqc1313
Tiling details UQC338 *22222b (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc1290 Snet sqc6541 Snet sqc46
Tiling details UQC339 *22222b (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc1087 Snet sqc6348 Snet sqc1197
Tiling details UQC340 *22222b (2,4,2) {8,6} {3.4.4.3.3.4.4.3}{3.4.4.3.4.4} Snet sqc1103 Snet sqc6517 Snet sqc1194

Symmetry-lowered hyperbolic tilings