U-tiling: UQC3342
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc454 |
*2323 |
(3,4,2) |
{6,8,3} |
{4.4.4.4.4.4}{4.3.3.4.4.3.3.4}{3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10010
|
|
P4232 |
208 |
cubic |
{6,8,3} |
14 |
(3,4) |
G
|
False
|
|
sqc9999
|
|
I213 |
199 |
cubic |
{6,8,3} |
14 |
(3,4) |
D
|
False
|
|
sqc10000
|
|
F-43m |
216 |
cubic |
{6,8,3} |
14 |
(3,4) |
Topological data
Vertex degrees | {6,8,3} |
2D vertex symbol | {4.4.4.4.4.4}{4.3.3.4.4.3.3.4}{3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<19.1:168:22 3 25 26 7 36 10 39 40 14 85 17 88 89 21 24 28 127 31 130 131 35 38 42 148 45 151 152 49 71 52 74 75 56 99 59 102 103 63 113 66 116 117 70 73 77 134 80 137 138 84 87 91 155 94 158 159 98 101 105 141 108 144 145 112 115 119 162 122 165 166 126 129 133 136 140 143 147 150 154 157 161 164 168,2 4 6 28 9 11 13 42 16 18 20 91 23 25 27 30 32 34 133 37 39 41 44 46 48 154 51 53 55 77 58 60 62 105 65 67 69 119 72 74 76 79 81 83 140 86 88 90 93 95 97 161 100 102 104 107 109 111 147 114 116 118 121 123 125 168 128 130 132 135 137 139 142 144 146 149 151 153 156 158 160 163 165 167,8 16 17 5 55 56 44 45 12 111 112 29 19 83 84 36 93 94 26 104 105 58 59 33 146 147 114 115 40 132 133 57 47 139 140 64 79 80 54 61 76 77 149 150 68 160 161 113 142 143 75 120 82 127 156 157 89 153 154 141 96 125 126 148 121 122 103 155 135 136 110 117 167 168 124 163 164 131 162 138 145 152 159 166:4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3,6 8 3 8 3 3 6 8 8 8 6 8 3 6> {(2, 124): 'tau3*t1', (2, 63): 'tau3^-1', (1, 125): 't2', (0, 63): 'tau3^-1*t1^-1', (2, 125): 'tau3*t1', (0, 49): 't1^-1', (0, 52): 't1^-1', (0, 53): 't1^-1', (2, 36): 'tau2^-1', (1, 111): 't3', (1, 97): 'tau2^-1*t3^-1*tau1', (2, 37): 'tau2^-1', (2, 166): 'tau1*t3^-1*tau2^-1', (2, 167): 'tau1*t3^-1*tau2^-1', (2, 160): 't2', (2, 162): 'tau1', (2, 163): 'tau1', (2, 159): 't2', (2, 152): 't2^-1', (2, 153): 't2^-1', (2, 154): 'tau1^-1', (2, 27): 't1^-1', (1, 83): 't2', (2, 140): 'tau2', (2, 121): 'tau3', (1, 76): 't1', (2, 132): 't3^-1', (1, 69): 'tau3^-1*t1^-1', (2, 131): 't3^-1', (0, 122): 't2', (0, 123): 't2', (2, 120): 'tau3', (2, 26): 't1^-1', (0, 115): 't1*tau3', (0, 119): 't2', (0, 116): 't1*tau3', (0, 105): 't3', (0, 108): 't3', (0, 109): 't3', (0, 91): 'tau2^-1*t3^-1*tau1', (0, 94): 'tau2^-1*t3^-1*tau1', (0, 95): 'tau2^-1*t3^-1*tau1', (0, 80): 't2', (0, 81): 't2', (0, 77): 't2'}