U-tiling: UQC3482
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc552 |
*222222 |
(3,3,2) |
{4,6,4} |
{10.10.10.10}{10.4.10.10.4.10}{1... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc67
|
|
Pmmm |
47 |
orthorhombic |
{4,4,6} |
3 |
(3,3) |
G
|
False
|
|
sqc1334
|
|
C2/c |
15 |
monoclinic |
{4,6,4} |
6 |
(3,4) |
D
|
False
|
|
sqc1358
|
|
Imma |
74 |
orthorhombic |
{4,6,4} |
6 |
(3,3) |
Topological data
Vertex degrees | {4,6,4} |
2D vertex symbol | {10.10.10.10}{10.4.10.10.4.10}{10.4.10.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<9.1:56:8 3 5 7 10 12 14 22 17 19 21 24 26 28 43 31 33 35 50 38 40 42 45 47 49 52 54 56,2 4 19 41 35 9 11 26 55 49 16 18 48 56 23 25 34 42 30 32 54 37 39 47 44 46 51 53,15 30 31 6 7 22 44 45 13 14 51 52 20 21 37 38 27 28 50 34 35 43 41 42 48 49 55 56:10 4 4 10,4 6 4 4 6 4> {(2, 29): 't3*tau2', (2, 30): 't3*tau2', (1, 47): 't2', (2, 21): 't1', (1, 33): 't3', (0, 49): 'tau1', (2, 49): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 50): 't2^-1*tau3', (2, 51): 't2^-1*tau3', (0, 42): 'tau1^-1', (1, 40): 't3^-1', (2, 14): 't1', (2, 9): 'tau3*t2^-1', (2, 42): 't2*tau3^-1*t1^-1*tau2*t3', (2, 43): 't2*tau3^-1', (2, 36): 't3^-1*tau2^-1', (2, 37): 't3^-1*tau2^-1', (1, 54): 't2^-1'}