U-tiling: UQC3524
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc668 |
*222222 |
(3,5,2) |
{4,4,4} |
{4.12.12.4}{12.12.12.12}{12.12.1... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc146
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4} |
4 |
(3,5) |
G
|
False
|
|
sqc2166
|
|
C2/c |
15 |
monoclinic |
{4,4,4} |
8 |
(3,5) |
D
|
False
|
|
sqc2164
|
|
Imma |
74 |
orthorhombic |
{4,4,4} |
8 |
(3,5) |
Topological data
Vertex degrees | {4,4,4} |
2D vertex symbol | {4.12.12.4}{12.12.12.12}{12.12.12.12} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<11.1:64:9 18 19 5 7 40 26 27 13 15 56 25 21 23 64 29 31 48 49 58 59 37 39 57 50 51 45 47 53 55 61 63,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64,17 3 20 21 38 39 48 25 11 28 29 54 55 64 19 62 63 56 27 46 47 40 57 35 60 61 49 43 52 53 51 59:4 12 12 4,4 4 4 4 4 4 4 4> {(2, 60): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 61): 't2^-1*tau3', (0, 56): 'tau1', (2, 63): 't2^-1', (2, 56): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 59): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 52): 't2*tau3^-1*t1^-1*tau2*t3', (2, 53): 't2*tau3^-1', (0, 48): 'tau1^-1', (2, 55): 't2', (2, 48): 't2*tau3^-1*t1^-1*tau2*t3', (2, 62): 't2^-1*tau3', (2, 51): 't2*tau3^-1*t1^-1*tau2*t3', (2, 45): 't3^-1*tau2^-1', (2, 47): 't3^-1', (2, 37): 't3*tau2', (2, 38): 't3*tau2', (2, 39): 't3', (2, 28): 't1', (2, 30): 'tau2*t3', (2, 24): 't1', (2, 27): 't1', (2, 20): 't1', (2, 16): 't1', (2, 19): 't1', (2, 14): 'tau3*t2^-1'}