U-tiling: UQC3585
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc775 |
*2323 |
(3,4,2) |
{3,4,3} |
{5.9.5}{5.5.9.9}{5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11230
|
|
P4232 |
208 |
cubic |
{3,4,3} |
28 |
(3,4) |
G
|
False
|
|
sqc11228
|
|
I213 |
199 |
cubic |
{3,4,3} |
28 |
(3,5) |
D
|
False
|
|
sqc11229
|
|
F-43m |
216 |
cubic |
{3,4,3} |
28 |
(3,4) |
Topological data
Vertex degrees | {3,4,3} |
2D vertex symbol | {5.9.5}{5.5.9.9}{5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<29.1:192:25 3 5 22 8 41 11 13 54 16 97 19 21 24 27 29 110 32 145 35 37 70 40 43 45 134 48 169 51 53 56 81 59 61 94 64 113 67 69 72 129 75 77 174 80 83 85 166 88 153 91 93 96 99 101 182 104 177 107 109 112 115 117 142 120 161 123 125 158 128 131 133 136 185 139 141 144 147 149 190 152 155 157 160 163 165 168 171 173 176 179 181 184 187 189 192,2 7 12 6 32 10 15 14 48 18 23 36 22 104 26 31 44 30 34 39 38 152 42 47 46 50 55 68 54 176 58 63 76 62 88 66 71 70 120 74 79 78 136 82 87 132 86 90 95 140 94 160 98 103 148 102 106 111 164 110 184 114 119 172 118 122 127 180 126 168 130 135 134 138 143 142 192 146 151 150 154 159 188 158 162 167 166 170 175 174 178 183 182 186 191 190,9 4 5 62 63 64 12 13 126 127 128 33 20 21 94 95 96 41 28 29 118 119 120 36 37 166 167 168 44 45 150 151 152 65 52 53 158 159 160 73 60 61 68 69 86 87 88 76 77 182 183 184 129 84 85 137 92 93 145 100 101 174 175 176 161 108 109 142 143 144 169 116 117 177 124 125 132 133 190 191 192 140 141 148 149 185 156 157 164 165 172 173 180 181 188 189:5 9 5 5 9 5 5 5 9 5 5 5 9 5 5 5,3 4 3 4 3 3 4 3 3 4 4 4 3 4 3 4 4 3 3 3 3 4 3 4 3 3 4 3> {(2, 189): 'tau1*t3^-1*tau2^-1', (0, 56): 't1^-1', (2, 191): 'tau1*t3^-1*tau2^-1', (2, 56): 'tau3', (1, 127): 't3', (0, 189): 'tau1', (2, 181): 't2', (2, 182): 't2', (2, 183): 't2', (2, 176): 'tau1^-1', (1, 123): 'tau1', (2, 45): 't3', (2, 46): 't3', (2, 47): 't3', (0, 104): 'tau2^-1*t3^-1*tau1', (1, 111): 'tau2^-1*t3^-1*tau1', (0, 45): 'tau2^-1', (0, 160): 't3^-1', (2, 160): 'tau2', (2, 29): 't1^-1', (2, 30): 't1^-1', (2, 31): 't1^-1', (1, 95): 't2', (0, 136): 't2', (1, 87): 't1', (2, 141): 'tau3*t1', (2, 142): 'tau3*t1', (1, 79): 'tau3^-1*t1^-1', (0, 141): 'tau3', (1, 59): 'tau3', (1, 191): 't2^-1', (0, 152): 't2^-1', (2, 190): 'tau1*t3^-1*tau2^-1', (2, 111): 't1^-1*tau3^-1', (2, 101): 't2', (1, 163): 'tau2', (2, 103): 't2', (2, 174): 't2^-1', (0, 72): 'tau3^-1*t1^-1'}