U-tiling: UQC3615
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc789 |
*2323 |
(3,4,2) |
{9,3,6} |
{3.5.3.3.5.3.3.5.3}{3.5.5}{5.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10947
|
|
P4232 |
208 |
cubic |
{9,3,6} |
20 |
(3,4) |
G
|
False
|
|
sqc10944
|
|
I213 |
199 |
cubic |
{9,3,6} |
20 |
(3,5) |
D
|
False
|
|
sqc10952
|
|
F-43m |
216 |
cubic |
{9,3,6} |
20 |
(3,4) |
Topological data
Vertex degrees | {9,3,6} |
2D vertex symbol | {3.5.3.3.5.3.3.5.3}{3.5.5}{5.5.5.5.5.5} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<30.1:192:25 3 5 7 24 41 11 13 15 56 97 19 21 23 27 29 31 112 145 35 37 39 72 43 45 47 136 169 51 53 55 81 59 61 63 96 113 67 69 71 129 75 77 79 176 83 85 87 168 153 91 93 95 99 101 103 184 177 107 109 111 115 117 119 144 161 123 125 127 160 131 133 135 185 139 141 143 147 149 151 192 155 157 159 163 165 167 171 173 175 179 181 183 187 189 191,2 27 20 6 8 10 43 52 14 16 18 99 22 24 26 108 30 32 34 147 68 38 40 42 132 46 48 50 171 54 56 58 83 92 62 64 66 115 70 72 74 131 172 78 80 82 164 86 88 90 155 94 96 98 180 102 104 106 179 110 112 114 140 118 120 122 163 156 126 128 130 134 136 138 187 142 144 146 188 150 152 154 158 160 162 166 168 170 174 176 178 182 184 186 190 192,9 4 5 30 31 64 12 13 46 47 128 33 20 21 102 103 96 41 28 29 120 36 37 150 151 168 44 45 152 65 52 53 174 175 160 73 60 61 86 87 68 69 118 119 88 76 77 134 135 184 129 84 85 137 92 93 158 159 145 100 101 176 161 108 109 182 183 144 169 116 117 177 124 125 166 167 132 133 192 140 141 190 191 148 149 185 156 157 164 165 172 173 180 181 188 189:3 5 3 5 3 5 3 5 5 3 3 5 3 3 5 5 3 5 3 5 3 5 3 5,9 3 6 3 6 3 6 9 3 3 9 3 3 3 6 3 9 3 3 3> {(2, 61): 't1^-1', (0, 56): 't1^-1', (1, 122): 't3', (2, 56): 'tau3', (0, 191): 'tau1', (2, 189): 't2^-1', (2, 181): 'tau1^-1*t3*tau2', (1, 115): 'tau3^-1', (2, 183): 't2', (2, 176): 'tau1^-1', (2, 62): 't1^-1', (1, 106): 'tau2^-1*t3^-1*tau1', (0, 47): 'tau2^-1', (2, 165): 't3^-1', (0, 160): 't3^-1', (2, 160): 'tau2', (2, 166): 't3^-1', (2, 157): 't2^-1', (2, 158): 't2^-1', (2, 31): 't1^-1', (1, 82): 't1', (2, 142): 't2', (2, 143): 'tau3*t1', (0, 143): 'tau3', (0, 184): 't2^-1', (2, 133): 't1*tau3', (0, 128): 't1*tau3', (2, 135): 'tau2*t3*tau1^-1', (2, 182): 'tau1^-1*t3*tau2', (1, 187): 'tau1', (1, 186): 't2^-1', (1, 74): 'tau3^-1*t1^-1', (0, 104): 'tau2^-1*t3^-1*tau1', (1, 90): 't2', (2, 103): 't2', (2, 134): 't1*tau3', (0, 88): 't2', (1, 43): 'tau2^-1', (2, 47): 't3'}