U-tiling: UQC3658
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc803 |
*22222 |
(3,4,2) |
{3,6,4} |
{6.5.6}{6.5.5.6.5.5}{5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc7709
|
|
Fddd |
70 |
orthorhombic |
{3,6,4} |
16 |
(3,5) |
D
|
False
|
|
sqc14614
|
|
Cmma |
67 |
orthorhombic |
{3,6,4} |
8 |
(3,4) |
Topological data
Vertex degrees | {3,6,4} |
2D vertex symbol | {6.5.6}{6.5.5.6.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<27.1:128:17 3 5 7 80 25 11 13 15 96 19 21 23 112 27 29 31 128 49 35 37 39 88 57 43 45 47 72 51 53 55 120 59 61 63 104 97 67 69 71 105 75 77 79 113 83 85 87 121 91 93 95 99 101 103 107 109 111 115 117 119 123 125 127,2 11 76 6 8 10 92 14 16 18 27 108 22 24 26 124 30 32 34 43 84 38 40 42 68 46 48 50 59 116 54 56 58 100 62 64 66 83 70 72 74 91 78 80 82 86 88 90 94 96 98 115 102 104 106 123 110 112 114 118 120 122 126 128,73 4 5 38 39 72 89 12 13 46 47 88 105 20 21 54 55 104 121 28 29 62 63 120 81 36 37 96 65 44 45 80 113 52 53 128 97 60 61 112 68 69 94 95 76 77 86 87 84 85 92 93 100 101 126 127 108 109 118 119 116 117 124 125:6 5 5 5 5 6 5 5 5 5 6 6,3 6 4 3 4 3 6 4 3 4 3 3 3 3 6 6> {(2, 61): 't1', (2, 62): 't1', (1, 122): 't2*tau1*t3^-1', (2, 53): 't1', (2, 54): 't1', (2, 55): 'tau3^-1', (2, 126): 'tau3*t1*tau2^-1', (1, 82): 'tau1^-1', (2, 40): 't3^-1', (0, 47): 't3^-1', (1, 98): 't3^-1*tau1*t2', (2, 32): 't2^-1', (0, 96): 't3^-1', (1, 91): 't2^-1', (2, 31): 'tau3', (2, 23): 'tau2^-1', (0, 39): 't2^-1', (1, 75): 't3^-1', (1, 74): 'tau1^-1', (2, 8): 't2', (0, 15): 't2', (0, 7): 't3', (2, 125): 'tau3*t1*tau2^-1', (0, 120): 't2', (2, 117): 'tau3^-1*t1^-1*tau2', (0, 112): 't2^-1', (1, 43): 't3^-1', (2, 111): 'tau2^-1', (1, 35): 't2^-1', (0, 104): 't3', (2, 110): 'tau2^-1*t1*tau3', (2, 72): 't3^-1'}