U-tiling: UQC3764
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc825 |
*22222 |
(3,4,2) |
{4,6,3} |
{6.6.6.6}{6.4.6.6.4.6}{6.6.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc7966
|
|
I4122 |
98 |
tetragonal |
{4,6,3} |
16 |
(3,5) |
D
|
False
|
|
sqc1999
|
|
P4222 |
93 |
tetragonal |
{3,4,6} |
8 |
(3,4) |
Topological data
Vertex degrees | {4,6,3} |
2D vertex symbol | {6.6.6.6}{6.4.6.6.4.6}{6.6.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.4:128:17 3 5 7 24 25 11 13 15 32 19 21 23 27 29 31 49 35 37 39 56 65 43 45 47 72 51 53 55 81 59 61 63 88 67 69 71 89 75 77 79 96 83 85 87 91 93 95 113 99 101 103 120 121 107 109 111 128 115 117 119 123 125 127,2 4 8 38 79 10 12 16 46 63 18 20 24 54 95 26 28 32 70 87 34 36 40 111 42 44 48 103 50 52 56 127 58 60 64 102 66 68 72 119 74 76 80 110 82 84 88 118 90 92 96 126 98 100 104 106 108 112 114 116 120 122 124 128,9 18 19 6 7 80 26 27 14 15 64 25 22 23 96 30 31 88 57 50 51 38 39 112 73 66 67 46 47 104 81 54 55 128 82 83 62 63 89 70 71 120 90 91 78 79 86 87 94 95 105 114 115 102 103 122 123 110 111 121 118 119 126 127:6 4 6 4 4 4 6 6 6 6 6 6,4 6 3 6 3 3 3 4 3 4 3 3 6 3 6 4> {(2, 56): 't3^-1', (2, 57): 't3^-1*tau2^-1', (2, 58): 't3^-1*tau2^-1', (0, 48): 'tau2^-1*t3^-1', (2, 48): 'tau2^-1', (0, 55): 'tau2^-1*t3^-1', (1, 118): 't1', (0, 40): 't2*tau3^-1', (2, 40): 't2', (0, 47): 't2*tau3^-1', (1, 125): 't1^-1', (2, 121): 't1^-1*tau3^-1*t2', (2, 25): 't1', (2, 26): 't1', (1, 94): 't1', (0, 16): 't1^-1', (2, 23): 't1^-1', (2, 16): 't1^-1', (0, 23): 't1^-1', (1, 69): 't1^-1', (0, 120): 'tau2^-1*t3^-1', (2, 120): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 127): 'tau2^-1*t3^-1', (2, 122): 't1^-1*tau3^-1*t2', (0, 112): 't1*tau3*t2^-1', (2, 119): 't1', (0, 119): 't1*tau3*t2^-1', (2, 114): 'tau2*t3', (2, 104): 'tau1', (2, 97): 't3^-1*tau2^-1', (2, 88): 'tau3^-1', (2, 89): 'tau3^-1*t2', (2, 90): 'tau3^-1*t2'}