h-net: hqc825


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,4,2)
Vertex degrees{4,6,3}
2D vertex symbol {6.6.6.6}{6.4.6.6.4.6}{6.6.4}
Delaney-Dress Symbol <825.2:8:1 3 5 7 8,2 4 8 6 7,1 2 3 6 7 8:6 4,4 6 3>
Dual net hqc644

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2057 Fmmm 69 orthorhombic {3,6,4} 8 (3,4)
Full image sqc2149 Fmmm 69 orthorhombic {3,6,4} 8 (3,4)
Full image sqc7978 P4/mmm 123 tetragonal {4,6,3} 16 (3,4)
Full image sqc7616 I4122 98 tetragonal {4,6,3} 16 (3,5)
Full image sqc7710 I4122 98 tetragonal {4,6,3} 16 (3,5)
Full image sqc7711 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7733 I4122 98 tetragonal {4,6,3} 16 (3,5)
Full image sqc7776 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7779 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7966 I4122 98 tetragonal {4,6,3} 16 (3,5)
Full image sqc7968 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7969 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7980 I4122 98 tetragonal {4,6,3} 16 (3,5)
Full image sqc181 Pmmm 47 orthorhombic {6,4,3} 4 (3,4)
Full image sqc1755 P4222 93 tetragonal {3,4,6} 8 (3,4)
Full image sqc1765 Cmma 67 orthorhombic {6,3,4} 8 (3,4)
Full image sqc1950 P42/mmc 131 tetragonal {3,6,4} 8 (3,4)
Full image sqc1999 P4222 93 tetragonal {3,4,6} 8 (3,4)
Full image sqc2096 Cmma 67 orthorhombic {6,3,4} 8 (3,4)
Full image sqc2132 P4222 93 tetragonal {3,6,4} 8 (3,4)
Full image sqc2133 P4222 93 tetragonal {3,6,4} 8 (3,4)
Full image sqc2153 Cmma 67 orthorhombic {6,3,4} 8 (3,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3764 *22222a (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} No s‑net Snet sqc7966 Snet sqc1999
Tiling details UQC3765 *22222a (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} Snet sqc7295 Snet sqc7710 Snet sqc2132
Tiling details UQC3766 *22222b (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} Snet sqc2149 Snet sqc7969 Snet sqc181
Tiling details UQC3767 *22222b (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} Snet sqc2057 Snet sqc7779 Snet sqc181
Tiling details UQC3768 *22222b (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} Snet sqc181 Snet sqc7968 Snet sqc2153
Tiling details UQC3769 *22222a (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} No s‑net Snet sqc7733 Snet sqc2133
Tiling details UQC3770 *22222b (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} No s‑net Snet sqc7711 Snet sqc2096
Tiling details UQC3771 *22222a (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} Snet sqc7978 Snet sqc7980 Snet sqc1950
Tiling details UQC3772 *22222b (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} Snet sqc1561 Snet sqc7776 Snet sqc1765
Tiling details UQC3773 *22222a (3,4,2) {4,6,3} {6.6.6.6}{6.4.6.6.4.6}{6.6.4} Snet sqc7106 Snet sqc7616 Snet sqc1755

Symmetry-lowered hyperbolic tilings