U-tiling: UQC385
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc478 |
*22222 |
(2,4,2) |
{8,3} |
{6.4.4.6.6.4.4.6}{6.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc892
|
|
P4/mmm |
123 |
tetragonal |
{3,6} |
6 |
(2,4) |
G
|
False
|
|
sqc6359
|
|
I4122 |
98 |
tetragonal |
{3,8} |
12 |
(2,5) |
D
|
False
|
|
sqc1154
|
|
P4222 |
93 |
tetragonal |
{3,8} |
6 |
(2,4) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {6.4.4.6.6.4.4.6}{6.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<12.5:112:15 4 5 20 21 22 11 12 27 28 18 19 25 26 43 32 33 48 49 57 39 40 62 63 46 47 71 53 54 76 77 60 61 78 67 68 83 84 74 75 81 82 99 88 89 104 105 106 95 96 111 112 102 103 109 110,2 10 6 7 9 13 14 16 24 20 21 23 27 28 30 52 34 35 37 66 41 42 44 73 48 49 51 55 56 58 80 62 63 65 69 70 72 76 77 79 83 84 86 94 90 91 93 97 98 100 108 104 105 107 111 112,8 3 5 34 70 10 12 41 56 22 17 19 48 84 24 26 62 77 50 31 33 98 64 38 40 91 71 45 47 112 52 54 90 78 59 61 105 66 68 97 73 75 104 80 82 111 92 87 89 94 96 106 101 103 108 110:4 6 4 4 6 4 6 4 4 4 6 4,3 8 8 3 8 8 3 3 3 3 3 3> {(0, 103): 'tau2*t3', (0, 41): 't2*tau3^-1', (2, 20): 't1^-1', (1, 51): 't3^-1', (2, 56): 'tau3', (0, 84): 't3^-1*tau2^-1', (0, 20): 't1^-1', (1, 79): 'tau3^-1', (2, 49): 't3^-1', (0, 96): 't2^-1*tau3*t1', (1, 16): 't1^-1', (0, 12): 't1^-1', (2, 63): 't2^-1', (2, 105): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 93): 'tau1', (2, 61): 't1^-1', (0, 48): 'tau2^-1*t3^-1', (0, 82): 'tau3^-1*t2', (2, 21): 't1', (0, 63): 't2^-1*tau3', (0, 104): 't1*tau3*t2^-1', (0, 21): 't1', (2, 84): 'tau1^-1', (0, 97): 't3*tau2', (1, 72): 'tau2', (0, 54): 't3^-1*tau2^-1', (2, 42): 'tau2^-1', (2, 82): 't1', (2, 62): 't1^-1', (1, 107): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 91): 't2^-1*tau3*t1', (1, 65): 't2^-1', (0, 49): 't3^-1*tau2^-1', }