| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,4,2) |
| Vertex degrees | {8,3} |
| 2D vertex symbol | {6.4.4.6.6.4.4.6}{6.4.4} |
| Delaney-Dress Symbol | <478.2:7:1 3 5 6 7,2 3 6 7,1 4 5 6 7:6 4,8 3> |
| Dual net | hqc472 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc6292 | P4/mmm | 123 | tetragonal | {3,8} | 12 | (2,4) | |
|
sqc6293 | I4122 | 98 | tetragonal | {3,8} | 12 | (2,5) | |
|
sqc6294 | I4122 | 98 | tetragonal | {3,8} | 12 | (2,5) | |
|
sqc6358 | Fddd | 70 | orthorhombic | {3,8} | 12 | (2,5) | |
|
sqc6359 | I4122 | 98 | tetragonal | {3,8} | 12 | (2,5) | |
|
sqc6410 | I4122 | 98 | tetragonal | {3,8} | 12 | (2,5) | |
|
sqc6411 | I4122 | 98 | tetragonal | {3,8} | 12 | (2,5) | |
|
sqc6519 | Fddd | 70 | orthorhombic | {3,8} | 12 | (2,5) | |
|
sqc6521 | Fddd | 70 | orthorhombic | {3,8} | 12 | (2,5) | |
|
sqc6727 | Fddd | 70 | orthorhombic | {3,8} | 12 | (2,5) | |
|
sqc6728 | Fddd | 70 | orthorhombic | {3,8} | 12 | (2,5) | |
|
sqc50 | Pmmm | 47 | orthorhombic | {3,8} | 3 | (2,4) | |
|
sqc1154 | P4222 | 93 | tetragonal | {3,8} | 6 | (2,4) | |
|
sqc1188 | P4222 | 93 | tetragonal | {3,8} | 6 | (2,4) | |
|
sqc1232 | P4222 | 93 | tetragonal | {3,8} | 6 | (2,4) | |
|
sqc1301 | Cmma | 67 | orthorhombic | {3,8} | 6 | (2,4) | |
|
sqc1306 | Cmma | 67 | orthorhombic | {3,8} | 6 | (2,4) | |
|
sqc14533 | Pmmm | 47 | orthorhombic | {8,3} | 3 | (2,4) | |
|
sqc14579 | P42/mmc | 131 | tetragonal | {8,3} | 6 | (2,4) | |
|
sqc14580 | P4222 | 93 | tetragonal | {3,8} | 6 | (2,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC381 | *22222a | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} |
sqc5933
|
sqc6411
|
sqc1188
|
![]() |
UQC382 | *22222a | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} | No s‑net |
sqc6293
|
sqc14580
|
![]() |
UQC383 | *22222b | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} |
sqc1093
|
sqc6521
|
sqc50
|
![]() |
UQC384 | *22222b | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} |
sqc50
|
sqc6728
|
sqc1301
|
![]() |
UQC385 | *22222a | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} |
sqc892
|
sqc6359
|
sqc1154
|
![]() |
UQC386 | *22222b | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} |
sqc1094
|
sqc6519
|
sqc50
|
![]() |
UQC387 | *22222b | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} | No s‑net |
sqc6727
|
sqc14533
|
![]() |
UQC388 | *22222b | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} |
sqc50
|
sqc6358
|
sqc1306
|
![]() |
UQC389 | *22222a | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} |
sqc6292
|
sqc6294
|
sqc1232
|
![]() |
UQC390 | *22222a | (2,4,2) | {8,3} | {6.4.4.6.6.4.4.6}{6.4.4} | No s‑net |
sqc6410
|
sqc14579
|