h-net: hqc478


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,2)
Vertex degrees{8,3}
2D vertex symbol {6.4.4.6.6.4.4.6}{6.4.4}
Delaney-Dress Symbol <478.2:7:1 3 5 6 7,2 3 6 7,1 4 5 6 7:6 4,8 3>
Dual net hqc472

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc6292 P4/mmm 123 tetragonal {3,8} 12 (2,4)
Full image sqc6293 I4122 98 tetragonal {3,8} 12 (2,5)
Full image sqc6294 I4122 98 tetragonal {3,8} 12 (2,5)
Full image sqc6358 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6359 I4122 98 tetragonal {3,8} 12 (2,5)
Full image sqc6410 I4122 98 tetragonal {3,8} 12 (2,5)
Full image sqc6411 I4122 98 tetragonal {3,8} 12 (2,5)
Full image sqc6519 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6521 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6727 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6728 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc50 Pmmm 47 orthorhombic {3,8} 3 (2,4)
Full image sqc1154 P4222 93 tetragonal {3,8} 6 (2,4)
Full image sqc1188 P4222 93 tetragonal {3,8} 6 (2,4)
Full image sqc1232 P4222 93 tetragonal {3,8} 6 (2,4)
Full image sqc1301 Cmma 67 orthorhombic {3,8} 6 (2,4)
Full image sqc1306 Cmma 67 orthorhombic {3,8} 6 (2,4)
Full image sqc14533 Pmmm 47 orthorhombic {8,3} 3 (2,4)
Full image sqc14579 P42/mmc 131 tetragonal {8,3} 6 (2,4)
Full image sqc14580 P4222 93 tetragonal {3,8} 6 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC381 *22222a (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} Snet sqc5933 Snet sqc6411 Snet sqc1188
Tiling details UQC382 *22222a (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} No s‑net Snet sqc6293 Snet sqc14580
Tiling details UQC383 *22222b (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} Snet sqc1093 Snet sqc6521 Snet sqc50
Tiling details UQC384 *22222b (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} Snet sqc50 Snet sqc6728 Snet sqc1301
Tiling details UQC385 *22222a (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} Snet sqc892 Snet sqc6359 Snet sqc1154
Tiling details UQC386 *22222b (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} Snet sqc1094 Snet sqc6519 Snet sqc50
Tiling details UQC387 *22222b (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} No s‑net Snet sqc6727 Snet sqc14533
Tiling details UQC388 *22222b (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} Snet sqc50 Snet sqc6358 Snet sqc1306
Tiling details UQC389 *22222a (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} Snet sqc6292 Snet sqc6294 Snet sqc1232
Tiling details UQC390 *22222a (2,4,2) {8,3} {6.4.4.6.6.4.4.6}{6.4.4} No s‑net Snet sqc6410 Snet sqc14579

Symmetry-lowered hyperbolic tilings