U-tiling: UQC3914
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1109 |
*222222 |
(3,5,2) |
{4,3,4} |
{6.12.12.6}{6.12.12}{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2871
|
|
Cmma |
67 |
orthorhombic |
{4,3,4} |
10 |
(3,5) |
G
|
False
|
|
sqc2875
|
|
C2/c |
15 |
monoclinic |
{4,3,4} |
10 |
(3,6) |
D
|
False
|
|
sqc306
|
|
Cmmm |
65 |
orthorhombic |
{4,3,4} |
5 |
(3,4) |
Topological data
Vertex degrees | {4,3,4} |
2D vertex symbol | {6.12.12.6}{6.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<32.3:72:37 3 5 42 8 27 55 12 14 60 17 36 64 21 23 69 26 46 30 32 51 35 39 41 44 72 48 50 53 63 57 59 62 66 68 71,2 21 6 7 9 11 30 15 16 18 20 24 25 27 29 33 34 36 38 66 42 43 45 47 57 51 52 54 56 60 61 63 65 69 70 72,46 4 5 51 25 26 18 64 13 14 69 34 35 55 22 23 60 36 37 31 32 42 40 41 70 71 63 49 50 61 62 72 58 59 67 68:6 12 6 12,4 3 4 4 3 4 4 3 4 3> {(2, 60): 't2*tau3^-1*t1^-1*tau2*t3', (2, 61): 't2*tau3^-1*t1^-1*tau2*t3', (2, 62): 'tau1^-1', (2, 63): 't2^-1', (0, 63): 't2^-1*tau3', (2, 59): 't2', (2, 53): 'tau1^-1', (2, 54): 't2', (2, 43): 't3*tau2*t1^-1*tau3^-1*t2', (0, 54): 't2*tau3^-1', (2, 50): 't3^-1', (2, 45): 't3^-1', (2, 41): 't3', (2, 42): 't3*tau2*t1^-1*tau3^-1*t2', (0, 45): 't3^-1*tau2^-1', (2, 36): 't3', (2, 33): 't1', (2, 34): 't1', (2, 24): 't1', (2, 25): 't1', (2, 14): 't2', (1, 65): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 0): 'tau2^-1*t3^-1', (1, 56): 't2*tau3^-1*t1^-1*tau2*t3', (1, 29): 't1', (1, 2): 't1^-1'}