# Cmmm

Number65
Symmetry Classorthorhombic
ChiralN

# s-nets

120 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
sqc32 Cmmm 65 orthorhombic {8,4} 2 (2,4)
sqc49 svk Cmmm 65 orthorhombic {7} 2 (1,4)
sqc58 Cmmm 65 orthorhombic {4,10} 2 (2,3)
sqc64 Cmmm 65 orthorhombic {5,4} 3 (2,4)
sqc66 Cmmm 65 orthorhombic {4,6} 3 (2,3)
sqc96 Cmmm 65 orthorhombic {4,12} 2 (2,4)
sqc97 Cmmm 65 orthorhombic {10,3} 3 (2,4)
sqc101 Cmmm 65 orthorhombic {3,10} 3 (2,4)
sqc103 Cmmm 65 orthorhombic {8,4} 3 (2,5)
sqc108 Cmmm 65 orthorhombic {4,8} 3 (2,4)
sqc113 Cmmm 65 orthorhombic {6,10} 2 (2,4)
sqc121 Cmmm 65 orthorhombic {6,4} 3 (2,5)
sqc124 Cmmm 65 orthorhombic {6,4} 3 (2,3)
sqc125 Cmmm 65 orthorhombic {6,4} 3 (2,3)
sqc135 Cmmm 65 orthorhombic {5,6} 3 (2,5)
sqc212 Cmmm 65 orthorhombic {3,12} 3 (2,5)
sqc213 Cmmm 65 orthorhombic {12,3} 3 (2,5)
sqc215 Cmmm 65 orthorhombic {10,4} 3 (2,5)
sqc231 Cmmm 65 orthorhombic {7,4} 3 (2,5)
sqc244 Cmmm 65 orthorhombic {4,7} 3 (2,4)
sqc245 Cmmm 65 orthorhombic {7,4} 3 (2,4)
sqc250 Cmmm 65 orthorhombic {6,6} 3 (2,4)
sqc262 Cmmm 65 orthorhombic {6,3} 4 (2,4)
sqc264 Cmmm 65 orthorhombic {6,6} 3 (2,4)
sqc275 Cmmm 65 orthorhombic {6,3} 4 (2,4)
sqc278 Cmmm 65 orthorhombic {5,4} 4 (2,5)
sqc292 Cmmm 65 orthorhombic {3,6} 4 (2,4)
sqc293 Cmmm 65 orthorhombic {6,3} 4 (2,4)
sqc298 Cmmm 65 orthorhombic {4,5} 4 (2,4)
sqc306 Cmmm 65 orthorhombic {4,3,4} 5 (3,4)
sqc351 Cmmm 65 orthorhombic {10,5} 3 (2,5)
sqc356 Cmmm 65 orthorhombic {4,8} 3 (2,4)
sqc358 Cmmm 65 orthorhombic {6,8} 3 (2,5)
sqc390 Cmmm 65 orthorhombic {8,4} 3 (2,5)
sqc396 Cmmm 65 orthorhombic {7,6} 3 (2,5)
sqc397 Cmmm 65 orthorhombic {7,3} 4 (2,5)
sqc398 Cmmm 65 orthorhombic {3,7} 4 (2,5)
sqc399 Cmmm 65 orthorhombic {7,3} 4 (2,5)
sqc400 Cmmm 65 orthorhombic {7,3} 4 (2,5)
sqc401 Cmmm 65 orthorhombic {6,8} 3 (2,6)
sqc402 Cmmm 65 orthorhombic {6,4} 4 (2,6)
sqc407 Cmmm 65 orthorhombic {6,8} 3 (2,5)
sqc421 Cmmm 65 orthorhombic {7,6} 3 (2,5)
sqc429 Cmmm 65 orthorhombic {6,4} 4 (2,5)
sqc472 Cmmm 65 orthorhombic {4,4,4} 5 (3,5)
sqc497 Cmmm 65 orthorhombic {4,4,4} 5 (3,3)
sqc545 Cmmm 65 orthorhombic {3,10} 5 (2,5)
sqc549 Cmmm 65 orthorhombic {9,4} 3 (2,5)
sqc551 Cmmm 65 orthorhombic {3,8} 4 (2,5)
sqc552 Cmmm 65 orthorhombic {8,6} 3 (2,5)
sqc556 Cmmm 65 orthorhombic {3,8} 4 (2,5)
sqc561 Cmmm 65 orthorhombic {4,7} 4 (2,6)
sqc563 Cmmm 65 orthorhombic {4,7} 4 (2,5)
sqc576 Cmmm 65 orthorhombic {4,6,4} 5 (3,4)
sqc578 Cmmm 65 orthorhombic {3,8} 4 (2,6)
sqc580 Cmmm 65 orthorhombic {8,3} 4 (2,6)
sqc581 Cmmm 65 orthorhombic {3,8} 4 (2,5)
sqc589 Cmmm 65 orthorhombic {7,4} 4 (2,6)
sqc605 Cmmm 65 orthorhombic {6,5} 4 (2,5)
sqc613 Cmmm 65 orthorhombic {6,5} 4 (2,5)
sqc644 Cmmm 65 orthorhombic {5,6} 4 (2,5)
sqc650 Cmmm 65 orthorhombic {5,6} 4 (2,5)
sqc654 Cmmm 65 orthorhombic {4,6} 5 (2,4)
sqc665 Cmmm 65 orthorhombic {4,3,4,4} 6 (4,5)
sqc690 Cmmm 65 orthorhombic {3,4,4} 6 (3,4)
sqc691 Cmmm 65 orthorhombic {3,4,4} 6 (3,4)
sqc726 Cmmm 65 orthorhombic {12,3} 5 (2,6)
sqc735 Cmmm 65 orthorhombic {3,9} 4 (2,6)
sqc741 Cmmm 65 orthorhombic {4,8} 4 (2,6)
sqc745 Cmmm 65 orthorhombic {9,3} 4 (2,6)
sqc750 Cmmm 65 orthorhombic {4,8} 5 (2,5)
sqc775 Cmmm 65 orthorhombic {7,5} 4 (2,6)
sqc799 Cmmm 65 orthorhombic {6,6} 4 (2,6)
sqc800 Cmmm 65 orthorhombic {3,6} 6 (2,5)
sqc840 Cmmm 65 orthorhombic {3,6} 6 (2,5)
sqc845 Cmmm 65 orthorhombic {7,5} 4 (2,6)
sqc848 Cmmm 65 orthorhombic {5,4} 5 (2,4)
sqc988 Cmmm 65 orthorhombic {4,10} 5 (2,6)
sqc996 Cmmm 65 orthorhombic {8,5} 4 (2,6)
sqc1012 Cmmm 65 orthorhombic {7,3} 6 (2,6)
sqc1013 Cmmm 65 orthorhombic {3,7} 6 (2,6)
sqc1066 Cmmm 65 orthorhombic {8,5} 4 (2,6)
sqc1068 Cmmm 65 orthorhombic {5,6} 5 (2,5)
sqc1069 Cmmm 65 orthorhombic {5,3} 6 (2,5)
sqc1071 Cmmm 65 orthorhombic {5,6} 5 (2,5)
sqc1072 Cmmm 65 orthorhombic {3,5} 6 (2,5)
sqc1074 Cmmm 65 orthorhombic {5,6} 5 (2,5)
sqc1077 Cmmm 65 orthorhombic {4,5} 6 (2,5)
sqc1082 Cmmm 65 orthorhombic {3,4,4,4} 7 (4,5)
sqc1144 Cmmm 65 orthorhombic {8,3} 6 (2,6)
sqc1178 Cmmm 65 orthorhombic {8,3} 6 (2,7)
sqc1210 Cmmm 65 orthorhombic {6,4} 5 (2,5)
sqc1213 Cmmm 65 orthorhombic {4,6} 6 (2,6)
sqc1237 Cmmm 65 orthorhombic {6,4} 5 (2,5)
sqc1249 Cmmm 65 orthorhombic {5,8} 5 (2,6)
sqc1251 Cmmm 65 orthorhombic {5,8} 5 (2,6)
sqc1252 Cmmm 65 orthorhombic {4,5} 6 (2,6)
sqc1463 Cmmm 65 orthorhombic {3,9} 6 (2,7)
sqc1469 Cmmm 65 orthorhombic {4,7} 6 (2,6)
sqc1478 Cmmm 65 orthorhombic {4,7} 6 (2,7)