U-tiling: UQC3917
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1109 |
*222222 |
(3,5,2) |
{4,3,4} |
{6.12.12.6}{6.12.12}{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc305
|
|
Pmmm |
47 |
orthorhombic |
{4,3,4} |
5 |
(3,5) |
G
|
False
|
|
sqc2868
|
|
C2/c |
15 |
monoclinic |
{4,3,4} |
10 |
(3,6) |
D
|
False
|
|
sqc2869
|
|
Imma |
74 |
orthorhombic |
{4,3,4} |
10 |
(3,5) |
Topological data
Vertex degrees | {4,3,4} |
2D vertex symbol | {6.12.12.6}{6.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<32.1:72:10 3 5 42 8 54 12 14 60 17 72 28 21 23 69 26 63 30 32 51 35 45 55 39 41 44 64 48 50 53 57 59 62 66 68 71,2 21 6 7 9 11 30 15 16 18 20 24 25 27 29 33 34 36 38 66 42 43 45 47 57 51 52 54 56 60 61 63 65 69 70 72,19 4 5 24 25 26 45 28 13 14 33 34 35 63 22 23 72 31 32 54 64 40 41 69 70 71 55 49 50 60 61 62 58 59 67 68:6 12 12 6,4 3 4 4 3 4 4 3 4 3> {(0, 59): 't2*tau3^-1', (2, 63): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 62): 't2', (0, 63): 'tau1', (2, 59): 't2*tau3^-1*t1^-1*tau2*t3', (0, 50): 't3^-1*tau2^-1', (0, 23): 'tau3^-1*t2', (2, 54): 't2*tau3^-1*t1^-1*tau2*t3', (2, 23): 't1', (0, 54): 'tau1^-1', (2, 27): 't1', (2, 18): 't1', (0, 53): 't3^-1', (0, 41): 't3*tau2', (2, 41): 't3*tau2*t1^-1*tau3^-1*t2', (0, 44): 't3', (2, 32): 't1', (0, 17): 't2'}