U-tiling: UQC3985
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1122 |
*22222 |
(3,5,2) |
{4,4,6} |
{5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc8295
|
|
P4/mmm |
123 |
tetragonal |
{4,4,5} |
16 |
(3,5) |
G
|
False
|
|
sqc8765
|
|
I4122 |
98 |
tetragonal |
{4,4,6} |
16 |
(3,6) |
D
|
False
|
|
sqc2396
|
|
P4222 |
93 |
tetragonal |
{4,4,6} |
8 |
(3,5) |
Topological data
Vertex degrees | {4,4,6} |
2D vertex symbol | {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<44.4:144:19 3 5 7 44 45 28 12 14 16 53 54 21 23 25 62 63 30 32 34 80 81 55 39 41 43 73 48 50 52 57 59 61 91 66 68 70 116 117 75 77 79 100 84 86 88 125 126 93 95 97 134 135 102 104 106 143 144 127 111 113 115 136 120 122 124 129 131 133 138 140 142,2 4 23 8 9 11 13 32 17 18 20 22 26 27 29 31 35 36 38 40 59 44 45 47 49 77 53 54 56 58 62 63 65 67 95 71 72 74 76 80 81 83 85 104 89 90 92 94 98 99 101 103 107 108 110 112 131 116 117 119 121 140 125 126 128 130 134 135 137 139 143 144,10 20 21 6 7 26 90 29 30 15 16 35 72 28 24 25 108 33 34 99 64 56 57 42 43 62 126 82 74 75 51 52 80 117 91 60 61 144 92 93 69 70 98 100 78 79 135 101 102 87 88 107 96 97 105 106 118 128 129 114 115 134 137 138 123 124 143 136 132 133 141 142:5 4 5 4 4 4 5 5 5 4 5 4 4 4 5 5,4 4 6 4 6 4 4 6 4 4 6 4 4 4 4 4> {(1, 121): 't3*tau2', (2, 63): 't3^-1', (1, 112): 't2*tau3^-1*t1^-1', (2, 54): 'tau2^-1', (0, 54): 'tau2^-1*t3^-1', (2, 45): 't2', (0, 142): 't1^-1', (0, 45): 't2*tau3^-1', (0, 34): 't1', (0, 35): 't1', (2, 28): 't1', (2, 29): 't1', (2, 26): 't1^-1', (2, 27): 't1', (0, 18): 't1^-1', (2, 16): 't1^-1', (2, 142): 't1^-1*tau3^-1*t2', (2, 136): 't1^-1*tau3^-1*t2', (0, 143): 't1^-1', (2, 133): 'tau2*t3', (2, 134): 't1', (2, 135): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 128): 'tau2*t3', (0, 135): 'tau2^-1*t3^-1', (1, 76): 'tau3*t2^-1', (2, 127): 'tau2*t3', (0, 126): 't1*tau3*t2^-1', (2, 117): 'tau1', (2, 119): 't2^-1*tau3*t1', (2, 106): 'tau3^-1*t2', (2, 100): 'tau3^-1*t2', (2, 101): 'tau3^-1*t2', (2, 97): 'tau2*t3', (2, 99): 'tau3^-1', (2, 92): 'tau2*t3', (1, 58): 'tau2^-1*t3^-1', (2, 91): 'tau2*t3', (1, 22): 't1^-1'}