h-net: hqc1122


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{4,4,6}
2D vertex symbol {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4}
Delaney-Dress Symbol <1122.2:9:1 3 5 7 8 9,2 4 5 8 9,1 2 3 6 7 8 9:5 4,4 4 6>
Dual net hqc1040

Derived s-nets

s-nets with faithful topology

24 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2728 Fmmm 69 orthorhombic {4,4,6} 8 (3,5)
Full image sqc2851 Fmmm 69 orthorhombic {4,6,4} 8 (3,5)
Full image sqc2974 Fmmm 69 orthorhombic {4,4,6} 8 (3,5)
Full image sqc9038 P4/mmm 123 tetragonal {4,4,6} 16 (3,5)
Full image sqc8446 I4122 98 tetragonal {4,4,6} 16 (3,6)
Full image sqc8765 I4122 98 tetragonal {4,4,6} 16 (3,6)
Full image sqc8767 I4122 98 tetragonal {4,4,6} 16 (3,6)
Full image sqc8784 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8805 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8808 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8882 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8883 I4122 98 tetragonal {4,4,6} 16 (3,6)
Full image sqc8918 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc9040 I4122 98 tetragonal {4,4,6} 16 (3,6)
Full image sqc2396 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2457 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2459 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2606 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2729 Cmma 67 orthorhombic {4,4,6} 8 (3,5)
Full image sqc2865 Cmma 67 orthorhombic {4,4,6} 8 (3,5)
Full image sqc2939 Cmma 67 orthorhombic {4,6,4} 8 (3,5)
Full image sqc2973 Cmma 67 orthorhombic {4,4,6} 8 (3,5)
Full image sqc2982 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2987 Cmma 67 orthorhombic {4,4,6} 8 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3985 *22222a (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc8295 Snet sqc8765 Snet sqc2396
Tiling details UQC3986 *22222a (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc8367 Snet sqc8446 Snet sqc2459
Tiling details UQC3987 *22222a (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc8294 Snet sqc8767 Snet sqc2606
Tiling details UQC3988 *22222a (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc8352 Snet sqc8883 Snet sqc2457
Tiling details UQC3989 *22222a (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc9038 Snet sqc9040 Snet sqc2982
Tiling details UQC3990 *22222b (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc2974 Snet sqc8918 Snet sqc2939
Tiling details UQC3991 *22222b (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc2728 Snet sqc8882 Snet sqc2973
Tiling details UQC3992 *22222b (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc2257 Snet sqc8784 Snet sqc2865
Tiling details UQC3993 *22222b (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc2851 Snet sqc8805 Snet sqc2729
Tiling details UQC3994 *22222b (3,5,2) {4,4,6} {5.5.5.5}{5.4.4.5}{5.4.4.5.4.4} Snet sqc2283 Snet sqc8808 Snet sqc2987

Symmetry-lowered hyperbolic tilings