U-tiling: UQC4015
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1127 |
*22222 |
(3,5,2) |
{4,4,3} |
{5.5.5.5}{5.8.8.5}{5.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2855
|
|
Fmmm |
69 |
orthorhombic |
{4,3,4} |
10 |
(3,5) |
G
|
False
|
|
sqc8806
|
|
Fddd |
70 |
orthorhombic |
{4,4,3} |
20 |
(3,6) |
D
|
False
|
|
sqc2932
|
|
Cmma |
67 |
orthorhombic |
{4,4,3} |
10 |
(3,5) |
Topological data
Vertex degrees | {4,4,3} |
2D vertex symbol | {5.5.5.5}{5.8.8.5}{5.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<46.4:144:37 3 5 7 89 81 46 12 14 16 107 99 55 21 23 25 125 117 64 30 32 34 143 135 39 41 43 98 108 48 50 52 80 90 57 59 61 134 144 66 68 70 116 126 100 75 77 79 91 84 86 88 93 95 97 102 104 106 136 111 113 115 127 120 122 124 129 131 133 138 140 142,2 4 41 8 9 11 13 50 17 18 20 22 59 26 27 29 31 68 35 36 38 40 44 45 47 49 53 54 56 58 62 63 65 67 71 72 74 76 104 80 81 83 85 95 89 90 92 94 98 99 101 103 107 108 110 112 140 116 117 119 121 131 125 126 128 130 134 135 137 139 143 144,10 20 21 6 7 26 45 29 30 15 16 35 54 28 24 25 63 33 34 72 46 56 57 42 43 62 65 66 51 52 71 64 60 61 69 70 91 110 111 78 79 116 108 100 119 120 87 88 125 99 128 129 96 97 134 137 138 105 106 143 127 114 115 144 136 123 124 135 132 133 141 142:5 8 5 8 5 8 5 8 5 5 5 5,4 4 3 4 3 3 3 4 4 4 4 4 3 4 4 3 4 4 3 3> {(1, 121): 'tau2^-1*t1*tau3', (2, 62): 't1', (0, 62): 'tau3^-1', (0, 63): 't1', (1, 112): 'tau2*t1^-1*tau3^-1', (0, 54): 't1', (0, 52): 't3^-1', (0, 43): 't2^-1', (2, 127): 't2^-1', (0, 35): 'tau3', (2, 35): 't1^-1', (0, 26): 'tau2^-1', (0, 16): 't2', (2, 143): 'tau3*t1*tau2^-1', (2, 136): 't2', (2, 137): 't2', (2, 133): 't2^-1', (2, 134): 'tau3^-1*t1^-1*tau2', (2, 135): 't2*tau1*t3^-1', (0, 135): 'tau3*t1*tau2^-1', (2, 124): 't3', (2, 126): 't2^-1*tau1^-1*t3', (1, 58): 't1', (0, 126): 'tau3^-1*t1^-1*tau2', (0, 125): 'tau2^-1', (2, 118): 't3', (2, 119): 't3', (2, 115): 't3^-1', (2, 110): 't3^-1', (2, 106): 't2^-1', (1, 67): 't1', (2, 99): 'tau1', (2, 92): 't2', (2, 90): 'tau1^-1', (0, 7): 't3', (2, 73): 't3'}